文章信息
- 张云莎, 李虎虎, 杜欢, 范英昌
- ZHANG Yun-sha, LI Hu-hu, DU Huan, FAN Ying-chang
- 星形胶质细胞介导的胶质-血管耦合与AD血脑屏障破坏的关系
- Relationship between astrocytes mediated gliovascular coupling and the blood-brain barrier damage in alzheimer's disease
- 天津中医药, 2016, 33(11): 702-704
- Tianjin Journal of traditional Chinese Medicine, 2016, 33(11): 702-704
- http://dx.doi.org/10.11656/j.issn.1672-1519.2016.11.17
-
文章历史
- 收稿日期: 2016-06-30
伴随人口老龄化社会的到来,阿尔茨海默病(AD)的发病率逐年上升,带来严重的社会及经济负担。因此,加深对AD 发病机制的认识,寻找有效的防治药物,是目前中国乃至全球医疗保健服务体系和经济社会发展中急需解决的重大问题。
AD 发病机制复杂,其中β 淀粉样蛋白(Aβ)级联学说是公认的重要发病机制之一。研究表明血脑屏障(BBB)破坏作为Aβ 级联学说的上游或下游事件促进AD 痴呆的发生[1]。BBB 屏障特征的维持有赖于星形胶质细胞(AC)介导的胶质-血管耦合[2]。AD 时,活化AC 的结构及功能变化引起胶质-血管耦合的异常,可能参与BBB 的破坏。现就AC 介导的胶质-血管耦合与BBB 的关系及两者在AD 中的变化做一综述。
1 正常星形胶质细胞介导的胶质-血管耦合维持BBB 的完整性BBB 主要由脑微血管内皮细胞(BMEC)及其间的紧密连接,毛细血管基膜,嵌入其中的周细胞和AC 终足形成的胶质膜等组成,维持脑微环境的动态平衡。BMEC 是BBB 的主要成分,与之相比,AC虽然在BBB 构成中不占主要地位,但研究表明它所介导的胶质-血管耦合在诱导和维持BBB 特征中发挥重要作用[2]。
1.1 星形胶质细胞终足的极性分布与BBB 完整性密切相关AC依靠终足实现与BMEC 的物理接触,终足极性分布的存在是BBB 完整的结构基础。脑微血管旁的AC 终足表现出由水通道蛋白4(AQP4)正交排列阵形成的极性特点。有报道称,随脑肿瘤导致AC 的AQP4 极性表达下降,BBB 完整性被破坏[3]。同样,敲除AC 足突上缝隙连接蛋白Cx43及Cx30 后,足突肿胀,AQP4 表达减少,AC 极性改变,BBB 完整性遭到破坏[4]。
1.2 星形胶质细胞的旁分泌SHH 因子诱导BBB特征的形成AC 与BMEC 物理接触后继发的旁分泌效应诱导非屏障内皮细胞屏障化,呈现BBB 特征。近年来,AC 分泌的SHH 因子在BBB 特征中的诱导作用备受关注。SHH 信号通路主要由分泌型糖蛋白配体SHH、跨膜蛋白受体Ptc、跨膜蛋白Smo、核转录因子蛋白Gli 及下游靶基因组成[5]。Alvarez 团队[6]发现AC 通过SHH-Gli 经典信号通路诱导BMEC高表达紧密连接蛋白,并发挥免疫沉默作用,从而促进BBB 的稳定性。Obermeier 等[7] 亦认为SHH 通路能调节BBB 的成熟性。除此,SHH 通过核转录因子NR2F2 促进AC 分泌Ang-18[8],或通过Gli-1 促进BMEC 分泌Ang-1,进而促进BMEC 高表达紧密连接蛋白,维持BBB 完整性[9]。作为对SHH 的血管反应,内皮细胞还可高表达netrin1 维持BBB 的屏障性能,抵御炎症因子对BBB 的破坏[10]。
2 活化星形胶质细胞介导的胶质-血管耦合异常导致BBB 完整性破坏活化AC 在包括AD 在内的多种神经系统疾病中发挥重要作用[11]。研究发现AD 时,AC 活化及其极性,旁分泌改变明显早于AD 典型病变[12]。活化AC 介导的胶质-血管耦合异常参与BBB破坏的进程。
动物实验证实,在AD 早期即发生AC 的极性变化。伴随Aβ 的沉积,AQP4 的表达及分布发生改变,血管周AC 的极性消失;转基因AD 小鼠模型中,淀粉样变血管周的AC 终足肿胀、与血管基膜脱离;终足膜上AQP4 表达水平下降且失去线性分布特点,胶质-血管耦合异常,导致BBB 上重要外排体P-糖蛋白表达下调[13-17]。
AC 的反应性活化存在异质性[18],活化AC 的结构、功能改变可因刺激的形式、严重程度而不同。Yang 等[19]发现Aβ 浓度不同,AC 活化程度则不同。低浓度Aβ 可引起AC 适度活化,AQP4 及GFAP 阳性表达增加;高浓度Aβ 则抑制AC 活化,AQP4 及GFAP 阳性表达下降。朱元等[20]发现适度活化AC 的分泌产物对提高BMEC 的活性和维持BBB 特性具有重要意义,AC 过度激活乃至受损后,对BBB 的保护作用减弱或消失。Mizee 等[21]发现适度活化的AC可通过高表达视黄醛脱氢酶促进视黄酸的合成,保护BBB 免受致炎因子的侵害。而过度活化的AC,旁分泌SHH 信号被抑制,紧密连接蛋白表达下降,导致BBB 通透性增加[22]。相反,有研究报道,在急性缺血性脑卒中动物模型中发现SHH 表达上调[23],抑制SHH 信号后,脑水肿加重[24];而在脑室内注射人重组SHH 后,脑水肿减轻,BBB 通透性降低[9]。有学者认为神经炎症反应可能通过SHH 信号增强胶质-血管信号耦合,维持或修复BBB 的屏障特征[25],这也许可以解释以上不同研究结果矛盾之处。
3 益气通络方药补阳还五汤对星形胶质细胞介导的胶质-血管耦合的调控中医认为AD 主要由气虚血瘀、毒损脑络所致,故益气活血,疏通络脉是恢复脑功能的治疗关键。益气通络方药的代表方补阳还五汤能抑制微血管缺血闭塞,减轻BBB 损伤,或抑制AC 过度活化,改善脑内微环境,保护神经元[26-28]。组方有效成分研究显示,黄芪甲苷上调紧密连接蛋白或调节AQP4 表达[29, 30];川芎嗪抑制Aβ 介导的神经炎症反应,保护BBB[31]。
4 小结与展望BBB 在维持脑内微环境稳态中发挥关键作用,BBB 破坏可通过不同机制促进AD 病程的发展。正常状态下,AC 介导的胶质-血管耦合有利于诱导维持BBB 特征;疾病状态下,活化AC 结构和/或功能的改变,影响胶质-血管信息耦合,可能介导BBB 异常。因此,改善AC 对微环境的反应,调控胶质-血管耦合,进而影响BBB 特征,将为防治包括AD 在内的多种神经系统疾病药物的开发开拓新思路。
[1] | Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease[J]. J Cereb Blood Flow Metab, 2013, 33 (10) : 1500–1513. DOI:10.1038/jcbfm.2013.135 |
[2] | Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier[J]. Nat Rev Neurosci, 2006, 7 (1) : 41–53. DOI:10.1038/nrn1824 |
[3] | Watkins S, Robel S, Kimbrough IF, et al. Robert SM Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells[J]. Nat Commun, 2014, 19 (5) : 4196. |
[4] | Ezan P, André P, Cisternino S, et al. Deletion of astroglial connexins weakens the blood-brain barrier[J]. J Cereb Blood Flow Metab, 2012, 32 (8) : 1457–1467. DOI:10.1038/jcbfm.2012.45 |
[5] | Ruizi AA, Mas C, Stecca B. The Gli code:an information nexus regulating cell fate,stemness and cancer[J]. Trends Cell Biol, 2007, 17 (9) : 438–447. DOI:10.1016/j.tcb.2007.06.007 |
[6] | Alvarez JI, Dodelet-Devillers A, Kebir H, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence[J]. Science, 2011, 334 (6063) : 1727–1731. DOI:10.1126/science.1206936 |
[7] | Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier[J]. Nat Med, 2013, 19 (12) : 1584–1596. DOI:10.1038/nm.3407 |
[8] | Li Y, Xia Y, Wang Y, et al. Sonic Hedgehog (Shh)Regulates the Expression of Angiogenic Growth Factors in Oxygen-Glucose Deprived Astrocytes by Mediating the Nuclear Receptor NR2F2[J]. Mol Neurobiol, 2012, 47 (3) : 967–975. |
[9] | Xia YP, He QW, Chen SC, et al. Recombinant Human Sonic Hedgehog Protein Regulates the Expression of ZO-1 and Occludin by Activating Angiopoietin-1 in Stroke Damage[J]. PLOS ONE, 2013, 8 (7) : e68891. DOI:10.1371/journal.pone.0068891 |
[10] | Podjaski C, Alvarez JI, Bourbonniere L. Netrin 1 regulates bloodbrain barrier function and neuroinflammation[J]. Brain, 2015, 138 (Pt 6) : 1598–1612. |
[11] | Pekny M, Pekna M, Messing A, et al. Astrocytes:a central element in neurological diseases[J]. Acta Neuropathol, 2016, 131 (3) : 323–345. DOI:10.1007/s00401-015-1513-1 |
[12] | Medeiros R, LaFerla FM. Astrocytes:conductors of the Alzheimer disease neuroinflammatory symphony[J]. Exp Neurol, 2013, 239 (1) : 133–138. |
[13] | Yang J, Lunde LK, Nuntagij P, et al. Loss of Astrocyte Polarization in the Tg-ArcSwe Mouse Model of Alzheimer's Disease[J]. J Alzheimers Dis, 2011, 27 (4) : 711–722. |
[14] | Merlini M, Meyer EP, Ulmann-Schuler A, et al. Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice[J]. Acta Neuropathol, 2011, 122 (3) : 293–311. DOI:10.1007/s00401-011-0834-y |
[15] | Hoshi A, Yamamoto T, Shimizu K, et al. Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease[J]. J Neuropathol Exp Neurol, 2012, 71 (8) : 750–759. DOI:10.1097/NEN.0b013e3182632566 |
[16] | Nicchia GP, Nico B, Camassa LMA, et al. The role of aquaporin-4 in the blood-brain barrier development and integrity:studies in animal and cell culture models[J]. Neuroscience, 2004, 129 (4) : 935–945. DOI:10.1016/j.neuroscience.2004.07.055 |
[17] | Park R, Kook SY, Park JC, et al. Aβ1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-κB signaling[J]. Cell Death and Disease, 2014, 5 (6) : e1299. DOI:10.1038/cddis.2014.258 |
[18] | Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes[J]. Neuroscience Letters, 2014, 565 (17) : 23–29. |
[19] | Yang W, Wu Q, Yuan C, et al. Aquaporin-4 mediates astrocyte response to β-amyloid[J]. Mol Cell Neurosci, 2012, 49 (4) : 406–414. DOI:10.1016/j.mcn.2012.02.002 |
[20] | 朱元, 李澎涛, 李卫红, 等. 不同状态的大鼠星形胶质细胞条件培养液对脑微血管内皮细胞血脑屏障特征性酶的影响[J]. 世界科学技术(中医药现代化), 2012, 14 (2) : 1393–1398. |
[21] | Mizee MR, Nijland PG, van der Pol SM, et al. Astrocyte derived retinoic acid:a novel regulator of blood-brain barrier function in multiple sclerosis[J]. Acta Neuropathol, 2014, 128 (5) : 691–703. DOI:10.1007/s00401-014-1335-6 |
[22] | Wang Y, Jin S, Sonobe Y, et al. Interleukin-1β Induces Blood-Brain Barrier Disruption by Down regulating Sonic Hedgehog in Astrocytes[J]. Plos One, 2014, 9 (10) : e110024. DOI:10.1371/journal.pone.0110024 |
[23] | Sims JR, Lee SW, Topalkara K, et al. Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation[J]. Stroke, 2009, 40 (11) : 3618–3626. DOI:10.1161/STROKEAHA.109.561951 |
[24] | Ji H, Miao J, Zhang X, et al. Inhibition of sonic hedgehog signaling aggravates brain damage associated with the down regulation of Gli1, Ptch1 and SOD1 expression in acute ischemic stroke[J]. Neurosci Lett, 2012, 506 (1) : 1–6. DOI:10.1016/j.neulet.2011.11.027 |
[25] | Britta E, Stefan L. Novel insights into the development and maintenance of the blood-brain barrier[J]. Cell Tissue Research, 2014, 355 (3) : 687–699. DOI:10.1007/s00441-014-1811-2 |
[26] | 吴晓光, 李义学, 尹瑞新, 等. 缺血再灌注大脑皮质区微血管、神经元的损伤及补阳还五汤干预作用[J]. 时珍国医国药, 2011, 22 (4) : 1013–1014. |
[27] | 谢璐霜, 龚圆渊, 张力华, 等. 中药对星形胶质细胞活性影响的研究进展[J]. 河南中医, 2012, 32 (6) : 782–784. |
[28] | Tang JL, Gao WJ, Li J, et al. The molecular and electrophysiological mechanism of buyanghuanwu decoction in learning and memory ability of vascular dementia rats[J]. Brain Research Bulletin, 2013, 99 (5) : 13–18. |
[29] | Qu YZ, Li M, Zhao YL, et al. Astragaloside IV attenuates cerebral ischemia-reperfusion-induced increase in permeability of the blood-brain barrier in rats[J]. Eur J Pharmacol, 2009, 606 (1-3) : 137–141. DOI:10.1016/j.ejphar.2009.01.022 |
[30] | Li M, Ma RN, Li LH, et al. Astragaloside IV reduces cerebral edema post-ischemia/reperfusion correlating the suppression of MMP-9 and AQP4[J]. Eur J Pharmacol, 2013, 715 (1-3) : 189–195. DOI:10.1016/j.ejphar.2013.05.022 |
[31] | Kim M, Kim SO, Lee M, et al. Tetramethylpyrazine, a natural alkaloid, attenuates pro-inflamatory mediators induced by amyloid β and interferon-γ in rat brain microglia[J]. Eur J Pharmacol, 2014 (740) : 504–511. |