文章信息
- 韩秀娣, 付于
- HAN Xiu-di, FU Yu
- 快速老化小鼠脑组织Aβ、CypD单核苷酸多态性及“三焦针法”对其作用的研究
- Research on the single nucleotide polymorphism of Aβ and CypD in brain tissue of senescence accelerated mice and the intervention effect of triple energizer techniques of needling
- 天津中医药, 2017, 34(3): 190-194
- Tianjin Journal of Traditional Chinese Medicine, 2017, 34(3): 190-194
- http://dx.doi.org/10.11656/j.issn.1672-1519.2017.03.13
-
文章历史
- 收稿日期: 2016-10-26
2. 天津中医药大学第一附属医院, 天津 300193
单核苷酸多态性(SNP),是指基因组DNA序列上群体发生频率大于1%的单个核苷酸差异。SNP最早是作为一种基因组作图的遗传标记,随着研究的进一步深入,发现其本身也可影响基因的功能。SNP可能会影响基因表达水平,影响翻译、剪接、基因的稳定性和蛋白质功能,在常见疾病的发展中具有重要功能。SNP成为遗传和生物医学研究越来越重要的工具。
阿尔茨海默病(AD)临床主要表现为记忆力减退、认知功能障碍等[1-2]。淀粉样多肽蛋白(Aβ)在细胞内外沉积是其重要病理特征[3-4],其生成异常和清除受损导致神经元死亡[5]。亲环蛋白D(CypD)与线粒体功能密切相关,在AD形成和进展中发挥重要作用[6-7]。
“三焦针法”注重调节三焦所涵盖的脏腑功能,临床应用具有较好的疗效[8]。该针法能够改善痴呆鼠学习记忆能力,对痴呆鼠脑神经递质水平、脑内衰老相关基因蛋白表达等均有一定影响[9];还可调节十多种功能基因群和蛋白群的表达[10]。本课题组前期研究[6, 11-12]发现,快速老化小鼠SAMP8皮质、海马神经元中Aβ42、CypD蛋白及mRNA表达量明显上调,且“三焦针法”可下调Aβ42、CypD蛋白及mRNA含量,为进一步探讨快速老化小鼠SAMP8和同品系正常小鼠SAMR1海马、皮质神经元中Aβ、CypD差异表达是否与其基因CDS区DNA序列SNP有关,以及“三焦针法”对Aβ、CypD基因CDS区DNA序列是否有干预作用。本研究以快速老化小鼠SAMP8为模型,采用PCR扩增、SNP一代测序等法比对小鼠皮质、海马组织中Aβ基因CDS区引物设计位点(17个)以及CypD基因CDS区引物设计位点(6个)的DNA序列,并观察“三焦针法”对Aβ、CypD基因CDS区DNA序列是否有干预作用。
1 实验材料与方法 1.1 动物及分组选取健康雄性8月龄SAMP8快速老化痴呆小鼠和SAMR1同品系正常小鼠, 随机分为SAMP8针刺组、SAMP8空白对照组、SAMR1正常对照组,每组2只。
1.2 穴位的选择和针刺针刺组取穴膻中、中脘、气海、血海(双侧)和足三里(双侧),血海穴施捻转泻法,其余各穴分别施捻转补法,时间均为30 s。SAMR1正常对照组和SAMP8空白对照组进行相同时间和程度的捉抓。
1.3 DNA提取分别取25~50 mg小鼠皮质、海马组织用液氮研磨成粉末,利用动物基因组DNA快速抽提试剂盒(上海生工生物工程有限公司)提取DNA,-20 ℃保存。
1.4 引物设计根据Genebank的数据资料,进行引物设计,一个位点设计一条正向引物和一条反向引物,引物由上海Sangon公司合成, 序列如下:
Aβ-1F5′ AGCACCGGGAGCAGAGCG 3′
Aβ-1R 5′ GCCCCCCACGTCTCGAGAT 3′
Aβ-2F5′ CTGTAGCATGTATATTAGCCCAAC 3′
Aβ-2R 5′ ATCATTAGGAACCAGGATTTTTA 3′
Aβ-3F5′ TTAGAGAATAACGGAACCTTTGA 3′
Aβ-3R 5′ GGCAGTGACATGCTGATAAAAT 3′
Aβ-4F5′ GGTAAGTTCTCTGACCTCCGT 3′
Aβ-4R 5′ AGAGTGAGTACCAGGACAGCC 3′′
Aβ-5F5′ CTGGGCTGTGGCTGTAGTC 3′
Aβ-5R 5′ TATCAAATATAACTGGAGTGAGA GG 3′
Aβ-6F5′ CCTCACGCATTACCAAAGTC 3′
Aβ-6R 5′ CCTTGTGATTTTGGGGGA 3′
Aβ-7F5′ CAGGTCACCACTGGGAGGAT 3′
Aβ-7R 5′ GGTTAGTGGTAGCAACAGTGGG 3′
Aβ-8F5′ CTGCCATCATTCCCACCT 3′
Aβ-8R 5′ ACAAAACCCATGCCAAGC 3′
Aβ-9F5′ GCTCCTCTTTCACACGATTTCT 3′
Aβ-9R 5′ GGGAATCTGTGGCCTTGC 3′
Aβ-10F5′ TTAGTCACATTGGGAGGGG 3′
Aβ-10R 5′ AAGAAGTGAAGAACAAGTGAA GG 3′
Aβ-11F5′ CCCAGTCTACACATGACCTCG 3′
Aβ-11R 5′ TGGCATTTCTCCTAGCTTCTT 3′
Aβ-12F5′ GGCTGGGTATCCATTTATGA 3′
Aβ-12R 5′ GAGATACAACACCCTCACCATAG 3′
Aβ-13F5′ AAGCCCCTTTACTTCAGTGTTC 3′
Aβ-13R 5′ TCCACCAACCCACAAAATG 3′
Aβ-14F5′ TGTTAGGTGGTGCCAAGTGA 3′
Aβ-14R 5′ CACCAGGTCCTTCTCTCAAAA 3′
Aβ-15F5′ CTTGAGAAAAATCCCTAAATCC 3′
Aβ-15R 5′ TTCCCAGTAGTCCTTCTCAGTT 3′
Aβ-16F5′ ACCCACCAACTCACGCTT 3′
Aβ-16R 5′ CACAGAGGGATGTTGCTTTT 3′
Aβ-17F5′ CACGGTTGTTAAGTACTTTGGG 3′
Aβ-17R 5′ GGTTTGTTTCTTTCCACGTTAT 3′
CYPD-1F 5′ GAAGCCAGCCGACCAATA 3′
CYPD-1R 5′ TGATGCCGCCTCTTCTGA 3′
CYPD-2F5′ CATGATGCCCTGGCCTCT 3′
CYPD-2R 5′ TGCTTAGGTTGAGACTCCCATA 3′
CYPD-3F5′ GGACTCAGGAAGAGGGGCA 3′
CYPD-3R 5′ TTCATCCCCACCAGCAGC 3′
CYPD-4F5′ CTGAGGGCGAGCCTTGAG 3′
CYPD-4R 5′ GAGCTGCCTGGATGCTAACA 3′
CYPD-5F5′ GTCCCAGGATCTGCAGGTT 3′
CYPD-5R 5′ CACAGCGAGAAGCAAGCC 3′
CYPD-6F5′ TAGGCTTTCAGGGTAGTGGTG 3′
CYPD-6R 5′ CAGACTCAATAGAAGTGGGTGC 3′
1.5 CDS区引物设计位点选择根据NCBI数据库的数据资料选取Aβ和CypD基因CDS区,选取Aβ CDS区17个引物设计位点和CypD基因CDS区6个引物设计位点。Aβ和CypD基因所选CDS区引物设计位点如下:
Aβ基因CDS区引物设计位点:395..451, 53256..53423, 70618..70747, 91065..91177, 93920..94113, 117427.. 117629, 130210..130377, 133646..133702, 143588..143721, 148456..148530, 148942..149100,158593..158721, 195668..195889, 202492..202545,208183..208283, 211085.. 211231, 218521..218622。
CypD基因CDS区引物设计位点:659..850, 1900.. 1930, 2431..2519, 4000..4096, 4693.. 4768, 5894..6029。
1.6 目的基因片段的扩增以基因组DNA为模板,应用多聚酶链式反应(PCR)扩增Aβ、CypD目的基因片段。PCR反应体系:Taq buffer 5.0 μL,Taq酶0.5 μL(5×106 U/μL),MgCl 25.0 μL(25 mol/L),dNTP 1.0 μL(10 mol/L),上、下游引物各1.0 μL,DNA模板1.0 μL,水35.5 μL。PCR反应条件:1)95 ℃预变性3 min。2)94 ℃变性30 s,55~60 ℃退火35 s,72 ℃延伸40~50 s。3)修复延伸5~8 min,扩增35个循环。
1.7 SNP测序利用ABI第一代测序仪,对上述PCR扩增产物进行测序。
2 实验结果PCR反应产物测序结果见测序图谱(以模型组皮层Aβ1号引物和CypD1号引物测序图谱为例,见图 1~2)。(测序图谱使用说明:峰图文件及序列比对可用SeqMan软件打开)。
利用SeqMan软件分别对Aβ、CypD基因DNA测序结果进行比对,结果发现:SAMR1正常组、SAMP8对照组小鼠皮质、海马Aβ和CypD基因CDS区引物设计位点DNA序列均未发生SNP,针刺组小鼠皮质、海马Aβ和CypD基因CDS区引物设计位点DNA序列未发生改变。
3 讨论SNP最早是作为一种基因组作图的遗传标记,随着研究的进一步深入,发现其本身也可影响基因的功能。不同类型的SNP可通过类似或不同的分子机制,分别在基因转录水平、转录后水平、翻译水平、翻译后蛋白折叠等方面对基因功能的发挥进行影响。大量研究表明个体间的遗传差异会影响其对复杂疾病的易感性,SNP已经成为复杂疾病研究的重要切入点[13]。吕小荣等[14]发现载脂蛋白E基因单核苷酸多态性能不同程度的增加轻度认知障碍和AD的发病风险。SNP在常见疾病的发展中也具有重要功能,一些研究已经确定SNP与多种常见疾病如AD、高血压、肥胖、类风湿性关节炎、冠心病等[15]有关。研究发现miR-146a前体单核苷酸多态性通过干扰miR-146a产物增加AD遗传易感性[16]。
“三焦针法”是韩景献教授基于“三焦气化异常导致老年性痴呆的创新病机”所设,临床应用具有较好的疗效[8]。该针法能够改善痴呆鼠学习记忆能力,对痴呆鼠脑神经递质水平、脑抗氧化酶活性、脑内衰老相关基因蛋白表达、G蛋白信号转导等均有一定影响[9];还可调节十多种功能基因群和蛋白群的表达,包括转录和翻译因子、细胞凋亡、细胞周期、DNA修复酶类等[10]。前期研究[6, 11-12]发现,快速老化小鼠SAMP8皮质、海马神经元中Aβ42、CypD蛋白及mRNA表达量均明显上调,“三焦针法”可下调Aβ42、CypD蛋白及mRNA含量。本研究发现,SAMR1正常对照组、SAMP8对照组小鼠皮质和海马中Aβ、CypD CDS区引物设计位点DNA序列均未发生SNP,针刺组小鼠皮质、海马Aβ和CypD CDS区引物设计位点DNA序列未发生变化,说明Aβ、CypD mRNA及蛋白差异表达与其基因CDS区DNA序列SNP无关,“三焦针法”对Aβ、CypD基因CDS区DNA序列无干预作用,并进一步推测AD的发生与Aβ、CypD基因CDS区DNA序列SNP无关,“三焦针法”对Aβ、CypD mRNA及蛋白表达水平的调节作用并非通过改变Aβ、CypD基因CDS区DNA序列的途径实现的,而Aβ、CypD mRNA及蛋白差异表达以及“三焦针法”对Aβ、CypD mRNA及蛋白表达水平的调节作用机制有待于进一步研究。
[1] | Manika A, Swati S, Veda PP, et al. Alzheimer's disease:An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products[J]. J Neurol Scis, 2016, 361 : 256–271. DOI:10.1016/j.jns.2016.01.008 |
[2] | Ringman JM, Liang LJ, Zhou Y, et al. Early behavioural changes in familial Alzheimer's disease in the Dominantly Inherited Alzheimer Network[J]. Brain, 2015, 138 (4): 1036–1045. DOI:10.1093/brain/awv004 |
[3] | Thal DR, Walter J, Saido TC, et al. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer's disease[J]. Acta Neuropathol, 2015, 129 : 167–182. DOI:10.1007/s00401-014-1375-y |
[4] | Yazan SB, Quoc-Viet D, Youssef M, et al. Mousa.amyloid-β and astrocytes interplay in amyloid-β related disorders[J]. Int J Mol Sci, 2016, 17 (3): 1–19. |
[5] | Palop JJ, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease:from synapses toward neural networks[J]. Nat Neurosci, 2010, 13 (7): 812–818. DOI:10.1038/nn.2583 |
[6] | 付于, 邢菁, 郭睿婧, 等. "三焦针法"对痴呆小鼠线粒体mPTP相关蛋白的调整[J]. 天津中医药, 2004, 31 (1): 34–37. |
[7] | Du H, Yan SS. Mitochondrial permeability transition pore inAlzheimer's disease:Cyclophilin D and amyloid beta[J]. Biochim Biophys Acta, 2010, 18 (1): 198–204. |
[8] | Yu J, Zhang X, Liu C, et al. Effect of Acupuncture Treatment on Vascular Dementia[J]. Neurol Res, 2006, 28 (1): 97–103. DOI:10.1179/016164106X91951 |
[9] | Liu CZ, Yu JC, Zhang XZ, et al. Acupuncture prevents cognitive deficits and oxidative stress in cerebral multi-infarction rats[J]. Neurosci Lett, 2006, 393 (1): 45–50. DOI:10.1016/j.neulet.2005.09.049 |
[10] | Yu J, Yu T, Han J. Aging-related Changes in the Transcriptional Profile of Cerebrum in Senescence-accelerated Mouse (SAMP10) is Remarkably Retarded by Acupuncture[J]. Acupunct Electrother Res, 2005, 30 (1-2): 27–42. |
[11] | Nie K, Yu JC, Fu Y, et al. Age-related decrease in constructive activation of Akt/PKB in SAMP10 hippocampus[J]. Biochem Biophys Res Commun, 2009, 378 (1): 103–107. DOI:10.1016/j.bbrc.2008.11.010 |
[12] | 郭睿婧. 三焦针法对痴呆小鼠大脑神经元线粒体超微结构, Aβ42、CypD蛋白及其mRNA调控的观察[D]. 天津: 天津中医药大学, 2014: 1-46. |
[13] | 刘宇婧. 三焦针法对痴呆模型小鼠神经元线粒体相关凋亡基因及抗氧化酶调控的实验研究[D]. 天津: 天津中医药大学, 2014: 1-47. |
[14] | B. Carlson. SNPs-A shortcut to personalized medicine[J]. Genetic Engineering & Biotechnology News, 2008, 28 (12): 12. |
[15] | 吕小荣, 钟远. 轻度认知障碍及阿尔茨海默病与载脂蛋白E基因多态性的相关性[J]. 中国老年学杂志, 2012, 32 (5): 917–919. |
[16] | Zhang B, Wang A, Xia C, et al. A single nucleotide polymorphism in primary-microRNA-146a reduces the expression of mature microRNA-146a in patients with Alzheimer's disease and is associated with the pathogenesis of Alzheimer's disease[J]. Mol Med Rep, 2015, 12 (3): 4037–4042. |
2. The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China