文章信息
- 崔换天, 贾贝田, 王丽, 周会芳, 边育红, 赵舒武
- CUI Huan-tian, JIA Bei-tian, WANG Li, ZHOU Hui-fang, BIAN Yu-hong, ZHAO Shu-wu
- 肠道菌群菌体成分及合成代谢产物的免疫调节作用
- Immunoregulatory effects of motabolites and composition on gut bacteria
- 天津中医药, 2017, 34(9): 645-648
- Tianjin Journal of Traditional Chinese Medicine, 2017, 34(9): 645-648
- http://dx.doi.org/10.11656/j.issn.1672-1519.2017.09.21
-
文章历史
- 收稿日期: 2017-04-21
2. 天津市第二人民医院, 天津 300192
人肠道内含有大量的微生物,这些微生物可分解食物中不能被人体直接吸收的成分,并将其合成一些人体所需的营养物质。此外,肠道菌群还形成一道重要的屏障,防止致病菌感染机体。近年来,越来越多的研究发现肠道菌群可以从许多方面调节免疫系统,从而在疾病的发生与发展中起到至关重要的作用。随着研究的深入,肠道菌群调节机体免疫系统的机制逐渐被发现。
1 肠道菌群菌体成分对免疫系统的影响许多肠道菌群自身菌体成分都具有抗原性,生理状况下,机体对其产生了免疫耐受,不会通过刺激肠黏膜免疫系统引发炎症反应。当肠道出现炎症或有致病菌入侵等引起肠道免疫系统紊乱时,肠黏膜免疫会对病原体产生免疫识别及免疫应答,从而清除病原体。
1.1 脂多糖与脂磷壁酸脂多糖(LPS)与脂磷壁酸(LTA)分别为肠道内革兰氏阴性菌与革兰氏阳性菌细胞壁的组成部分,正常情况下肠道中含有大量的LPS与LTA,若LPS与LTA持续地刺激肠道固有免疫系统产生炎症反应,会引起很严重的免疫疾病[1]。LPS与LTA体外短时间刺激小肠上皮细胞(IEC)会通过细胞表面TLR通路进而引起包括IRAK与MAP磷酸化,增加细胞白介素-8(IL-8)表达,但是经长时间或反复刺激后这种反应会消失[2]。低表达TLR2与TLR4可以使小肠上皮细胞产生对LPS的耐受[3-4]。TLR9的配体CpG及其形成的复合物R-848可被TLR7分子识别,也参与了机体对LPS的耐受[5-6]。LPS诱导肌球蛋白轻链激酶磷酸化,从而增强结肠细胞旁通透性是引发败血症的机制之一[7]。此外,LPS可通过TLR4与MyD88影响Ⅰ型糖尿病的发展[8-9]。最新研究表明,拟杆菌属产生的LPS与大肠杆菌LPS具有不同的免疫原性,拟杆菌属LPS可抑制固有免疫信号通路并且降低机体对内毒素耐受,从而引发自身免疫性疾病,而大肠杆菌LPS不会引起该反应[10]。
1.2 肽聚糖肽聚糖为细菌细胞壁的主要组成部分,存在于革兰氏阴性菌与革兰氏阳性菌中。研究表明,肠道菌群中肽聚糖主要通过模式识别受体NOD1/NOD2影响固有免疫系统,革兰阴性菌含有mese-DAP的肽聚糖可通过NOD1引起脂肪细胞与肝细胞产生胰岛素抵抗[11]。革兰阳性细菌肽聚糖结构之一的胞壁酰二肽(MDP)可通过NOD2引起肌肉细胞自发炎症反应及抑制胰岛素对肌肉细胞的作用,从而诱发肥胖[12-13]。也有研究表明,MDP可通过NOD2促进肠隐窝中Lgr5+干细胞存活,防止其受到氧化损伤,从而促进肠上皮的修复[14]。肽聚糖识别蛋白3(PGLYRP3)与NOD2可缓解小鼠溃疡性结肠炎[15]。缺失NOD1与NOD2小鼠会导致黏膜屏障缺失,具体表现为抗菌肽a/b防御素及RegⅢ gamma产量降低,并且更容易诱发结肠炎[16-17]。
1.3 鞭毛蛋白鞭毛蛋白是鞭毛的组成部分,正常情况下肠道菌群也可分泌鞭毛蛋白,不会引起机体炎症反应,当鞭毛蛋白接触到小肠基底部外侧时才会引起炎症反应[18]。研究表明,沙门氏菌产生鞭毛蛋白可被小肠上皮细胞TLR5识别,进而激活NFKB通路使细胞分泌促炎因子[19]。在小鼠结肠炎模型中,鞭毛蛋白可以通过TLR5通路激活受伤的结肠上皮细胞丝裂原活化蛋白激酶/胞外信号调节激酶1/2(MEK1/2),使细胞分泌IL-6、肿瘤坏死因子-α(TNF-α)加重结肠炎的发生[20]。出血性大肠杆菌(EHEC)是一种通过食物传播的病原微生物[21],感染后使人出现溶血性尿毒症并引发肾衰竭导致死亡[22],EHEC产生鞭毛蛋白与肠道中的b-defensin2结合后使肠道中免疫细胞产生大量IL-8从而促进炎症反应[23]。
2 肠道菌群合成代谢产物对免疫系统的影响肠道菌群通过分解食物中的营养物质,产生了许多代谢产物,这些代谢产物通过各种途径发挥着重要的生理作用,近年来,越来越多的研究发现肠道菌群合成代谢产物对免疫系统有十分重要的影响。
2.1 短链脂肪酸短链脂肪酸(SCFA)是一种由饮食中的纤维素作用于肠道菌群所形成的发酵产物,在肠腔中的浓度大约为50~100 mmol/L[24-25]。肠腔中的SCFA主要分为醋酸盐、丙酸盐与丁酸盐3类[26]。SCFA主要通过被动扩散、SMCT1/Slc5a8与MCT1/ Slc16a1载体蛋白转运及激活G蛋白偶联通路3个途径进入被肠道内细胞吸收[27-28]。有文献报道,SCFA可以通过G蛋白偶联受体GPR43作用于肠道内调节性T细胞(cTreg),改善万古霉素引起的肠道中cTreg数量失调,上调无菌小鼠cTreg细胞Foxp3及IL-10基因表达, 进而抑制效应CD4+T细胞(Teff),缓解结肠炎[29]。最新研究表明,SCFA还可以增加大鼠唾液中免疫球蛋白A(IgA)的含量,从而揭示了摄入纤维素增强唾液IgA的作用机制[30]。SCFA对EHEC活性有一定的影响,如在小肠中SCFA可增强EHEC鞭毛基因及蛋白表达,增强鞭毛活动性,而在大肠中,SCFA对EHEC鞭毛基因蛋白表达及活动性起到抑制作用。这种现象可以解释机体肠道微环境与EHEC感染的相互作用[31]。
进一步研究表明,丁酸盐可以调控脾脏与淋巴结中的Treg非编码序列-1(CNS1)及抑制组蛋白H3脱乙酰化从而促进Treg分化[32],也有研究表明丁酸盐可作用于G蛋白偶联受体(GPR)影响Treg分化[33]。此外,丁酸盐还通过作用于GPR41影响树突状细胞,上调DC中免疫抑制酶吲哚胺2,3双氧酶1(IDO1)和醛脱氢酶1A2(A1dh1A2)表达,继而推动早期T细胞向Treg分化,抑制早期T细胞向产生γ-干扰素(IFN-γ)细胞分化[27, 34],丁酸盐与丙酸盐可以抑制骨髓树突状细胞(BMDC)协同刺激分子CD40表达,减少IL-6,IL-12p40的产生从而抑制BMDC活化[35]。丙酸盐可促进脾脏与结肠中Treg的再生,醋酸盐可通过CNS1增强Treg在结肠中的聚集[36]。在痛风引起的炎症反应模型中,醋酸盐可以通过抑制中性粒细胞NF-κB活性并促进细胞分泌抗炎因子IL-10,转化生长因子-β(TGF-β)及膜联蛋白A1缓解炎症反应[37]。
2.2 细菌多糖肠道中的细菌多糖(PSA)可由一些脆弱拟杆菌属(B.fragills)外膜泡产生[38]。研究表明PSA可以被小肠的树突状细胞(DC)识别并激活CD4+T细胞分泌细胞因子,从而促进无菌小鼠体内T细胞增殖,改善TH1/TH2细胞失调,促进淋巴组织形成[39]。在小鼠结肠炎模型中,PSA被DC识别并通过TLR2通路调控DC中Gadd45a表达从而使DC产生IL-10,进而促进调节性T细胞(Treg)增殖达到缓解结肠炎的作用[38, 40-41]。在实验性自身免疫性脊髓炎中,口服PSA可引起CD103阳性,DC与Treg在淋巴结中聚集,进而作用于中枢神经系统,达到对疾病的治疗作用[42]。
2.3 血清淀粉蛋白A血清淀粉蛋白A(SAA)由肠内分节丝状菌(SFB)产生。最新研究表明SFB产生SAA通过TLR,NOD,ATP信号通路影响Th17细胞分化,并促进肠道固有层中DC分泌IL-23,以此调控Th17细胞影响许多炎症疾病与自身免疫疾病的发生与发展,如结肠炎、关节炎、自身免疫性脊髓炎等[43-45]。SAA可通过促进巨噬细胞P38-MAPK磷酸化和抑制基因SR-BI从而引发机体炎症反应[46]。也有研究发现SAA可防止变形虫对机体的感染,其作用机制是通过促进H3K27组蛋白去甲基化酶Jmjd3进而上调骨髓中树突状细胞Csf2ra表达并促进单核祖细胞增殖完成的[47]。
3 展望研究表明,中药及其有效成分对免疫系统具有十分重要的影响[48],然而许多中草药中有效成分皂苷、黄酮等在体内直接利用率低。由于中药大多数以口服剂型为主,肠道菌群在这些药物的代谢中起到了十分重要的作用。黄芩苷可通过肠道菌群将其代谢成黄芩素从而被机体吸收发挥作用[49]。人参皂苷在体内利用率低,且很难直接被肝脏代谢,肠道菌群可代谢人参皂苷从而使其发挥药效[50]。芦丁广泛存在于许多中药黄酮成分中,体外研究发现肠道菌群可将芦丁转化为槲皮素或其他物质,从而作用于人体发挥作用[51]。然而,目前研究肠道菌群在中药的代谢吸收方面大都以体外实验为主,且许多中药作用于肠道菌群后的代谢产物尚不明确。在未来,通过在体实验研究肠道菌群对中药的代谢及其代谢产物对机体免疫系统的作用将进一步明确中药在体内的机制,并为开发新的药物提供思路。
[1] | Naidu AS, Bidlack WR, Clemens RA. Probiotic spectra of lactic acid bacteria (LAB)[J]. Crit Rev Food Sci Nutr, 1999, 39 (1): 13–126. DOI:10.1080/10408699991279187 |
[2] | Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to toll-like Receptor bacterial ligands in intestinal epithelial cells[J]. Gastroenterology, 2004, 126 (4): 1054–1070. DOI:10.1053/j.gastro.2004.01.007 |
[3] | Melmed G, Thomas LS, Lee N, et al. Human intestinal epithelial cells are broadly unresponsive to toll-like receptor 2-dependent bacterial ligands:implications for host-microbial interactions in the gut[J]. J Immunol, 2003, 170 (3): 1406–1415. DOI:10.4049/jimmunol.170.3.1406 |
[4] | Abreu MT, Vora P, Faure E, et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulatedproinflammatory gene expression in response to bacterial lipo-polysaccharide[J]. J Immunol, 2001, 167 (3): 1609–1616. DOI:10.4049/jimmunol.167.3.1609 |
[5] | Crabtree TD, Jin L, Raymond DP, et al. Preexposure of murine mac-rophages to CpG oligonucleotide results in a biphasic tumor necrosis factor alpha response to subsequent lipopolysaccharide challenge[J]. Infect Immun, 2001, 69 (4): 2123–2129. DOI:10.1128/IAI.69.4.2123-2129.2001 |
[6] | Sato S, Takeuchi O, Fujita T, et al. A variety of microbial components induce tolerance to lipopolysac-charide by differentially affecting MyD88-dependent and -independent pathways[J]. Int Immunol, 2002, 14 : 783–791. DOI:10.1093/intimm/dxf046 |
[7] | Moriez R, Salvador CC, Theodorou V, et al. Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats[J]. American Journal of Pathology, 2005, 167 (4): 1071–1079. DOI:10.1016/S0002-9440(10)61196-0 |
[8] | Gulden E, Ihira M, Ohashi A, et al. Toll-like receptor 4 deficiency accelerates the development of insulindeficient diabetes in non-obese diabetic mice[J]. Plos One, 2013, 8 (9): e75385. DOI:10.1371/journal.pone.0075385 |
[9] | Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes[J]. Nature, 2008, 455 (7216): 1109–1113. DOI:10.1038/nature07336 |
[10] | Vatanen T, Kostic A, D'Hennezel E, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans[J]. Cell, 2016, 165 (4): 842–853. DOI:10.1016/j.cell.2016.04.007 |
[11] | Schertzer JD, Klip A. Give a NOD to insulin resistance[J]. Am J Physiol Endocrinol Metab, 2011, 301 (4): E585–E586. DOI:10.1152/ajpendo.00362.2011 |
[12] | Tamrakar AK, Schertzer JD, Chiu TT, et al. NOD2 activation induces muscle cell-autonomous innate immune responses and insulin resistance[J]. Endocrinology, 2010, 151 (12): 5624–5637. DOI:10.1210/en.2010-0437 |
[13] | Schertzer JD, Tamrakar AK, Magalhces JG, et al. NOD1 activators link innate immunity to insulin resistance[J]. Diabetes, 2011, 60 (9): 2206–2215. DOI:10.2337/db11-0004 |
[14] | Nigro G, Rossi R, Commere PH, et al. The Cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration[J]. Cell Host & Microbe, 2014, 15 (6): 792–798. |
[15] | Jing XF, Zulfiqar F, Park SY, et al. Peptidoglycan recognition protein 3 and Nod2 synergistically protect mice from dextran sodium sulfate? Induced Colitis[J]. The Journal of Immunology, 2014, 193 (6): 3055–3069. DOI:10.4049/jimmunol.1301548 |
[16] | Natividad J, Petit V, Huang X, et al. Commensal and probiotic bacteria influence intestinal barrier function and susceptibility to colitis in Nod1-/-; Nod2-/-mice[J]. Inflamm Bowel Dis, 2012, 18 (8): 1434–1446. DOI:10.1002/ibd.22848 |
[17] | Robertson SJ, Zhou JY, Geddes K, et al. Nod1 and Nod2 igsnaling does not alter the composition of intestinal bacterial communities at homeostasis[J]. Gut Microbes, 2013, 4 (3): 222–231. DOI:10.4161/gmic.24373 |
[18] | Gewirtz AT, Simon PO, Schmitt CK, et al. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response[J]. J Clin Invest, 2001, 107 (1): 99–109. DOI:10.1172/JCI10501 |
[19] | Gewirtz AT, Navas TA, Lyons S, et al. Cutting edge:bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression[J]. Journal of Immunology, 2001, 167 (4): 1882–1885. DOI:10.4049/jimmunol.167.4.1882 |
[20] | Rhee SH, Im E, Riegler M, et al. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation[J]. Proceedings of the National Academy of Science of the Unted States of America, 2005, 102 (38): 13610–13615. DOI:10.1073/pnas.0502174102 |
[21] | Baggiolini M, Clark LI. Interleukin-8, a chemotactic and inflammatory cytokine[J]. Febs Lett, 1992, 307910 : 97–101. |
[22] | Baruch K, Gur-Arie L, Nadler C, et al. Metalloprotease type Ⅲ effectors that specifically cleave JNK and NF-κB[J]. EMBO J, 2010, 30 (1): 221–231. |
[23] | Steven BL, Alison P, Samuel JE, et al. Flagellin Induces β-Defensin 2 in Human Colonic Ex vivo Infection with Enterohemorrhagic Escherichia coli[J]. Frontiers in Cellular & Infection Microbiology, 2016, 6 (310): 68. |
[24] | Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124 (4): 837–848. DOI:10.1016/j.cell.2006.02.017 |
[25] | Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic, and venous blood[J]. Gut, 1987, 28 (10): 1221–1227. DOI:10.1136/gut.28.10.1221 |
[26] | Hverstad T, Midtvedt T. Short-chain fatty acids in germfree mice and rats[J]. J Nutr, 1986, 116 (9): 1772–1776. |
[27] | Gurav A, Sivaprakasam S, Bhutia YD, et al. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions[J]. Biochem J, 2015, 469 (2): 267–278. DOI:10.1042/BJ20150242 |
[28] | Miyauchi S, Gopal E, Fei YJ, et al. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na(+)-coupled transporter for short-chain fatty acids[J]. J Biol Chem, 2004, 279 (14): 13293–13296. DOI:10.1074/jbc.C400059200 |
[29] | Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341 (6145): 569–573. DOI:10.1126/science.1241165 |
[30] | Yamamoto Y, Takahahi T, To M, et al. The salivary IgA flow rate is increased by high concentrations of short-chain fatty acids in the cecum of rats ingesting fructooligosaccharides[J]. Nutrients, 2016, 8 (8): 1–13. |
[31] | Lackraj T, Kim JI, Tran SL, et al. Differential modulation of flagella expression in enterohemorrhagic escherichia coli O157:H7 by intestinal short chain fatty acid mixes[J]. Microbiology, 2016, 162 (10): 1761–1772. DOI:10.1099/mic.0.000357 |
[32] | Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504 (7480): 2729–2732. |
[33] | Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40 (1): 128–139. DOI:10.1016/j.immuni.2013.12.007 |
[34] | Pushpakumara D, Marambe B, Silva G, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J]. J Biol Chem, 2003, 278 (28): 25481–25489. DOI:10.1074/jbc.M301403200 |
[35] | Nastasi C, Candela M, Bonefeld CM, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells[J]. Sci Rep, 2015, 5 : 16148. DOI:10.1038/srep16148 |
[36] | Arpaia N, Campbell C, Fan XY, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504 (7480): 451–455. DOI:10.1038/nature12726 |
[37] | Vieira AT, Galvo I, Macia LM. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice[J]. J Leukoc Biol, 2017, 102 (1): 275–284. |
[38] | Shen Y, Torchia ML, Lawson G, et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection[J]. Cell Host Microbe, 2012, 12 (12): 509–520. |
[39] | Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system[J]. Cell, 2005, 122 (1): 1077–118. |
[40] | Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota[J]. Proc Natl Acad Sci USA, 2010, 107 (27): 12204–12209. DOI:10.1073/pnas.0909122107 |
[41] | Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota[J]. Science, 2011, 332 (6032): 974–977. DOI:10.1126/science.1206095 |
[42] | Ochoa-Reparaz J, Wang Y, Mielzarz D, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease[J]. Mucosal Immunol, 2010, 3 (5): 487–495. DOI:10.1038/mi.2010.29 |
[43] | Lee YK, Menezes JS, Umesaki Y, et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis[J]. Proc Natl Acad Sci USA, 2011, 108 Suppl1 (11): 4615–4622. |
[44] | Stepankova R, Fiona P, Kofronova O, et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells[J]. Inflamm Bowel Dis, 2007, 13 (10): 1202–1211. DOI:10.1002/ibd.20221 |
[45] | Wu HJ, Ivanov Ⅱ, Darce J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells[J]. Immunity, 2010, 32 (6): 815–827. DOI:10.1016/j.immuni.2010.06.001 |
[46] | Zhu MY, Wang Y, Wang Y, et al. Serum amyloid A promotes the inflammatory response via p38-MAPK/SR-BI pathway in THP-1 macrophages[J]. Sheng Li Xue Bao, 2016, 68 (3): 293–300. |
[47] | Burgess SL, Saleh M, Cowardin CA, et al. Role of serum amyloid A, GM-CSF and bone marrow granulocyte-monocyte precursor expansion in segmented filamentous bacteria-mediated protection from entamoeba histolytica[J]. Infect Immun, 2016, 84 (10): 2824–2832. DOI:10.1128/IAI.00316-16 |
[48] | 崔换天, 王丽, 边育红. 中药多糖对免疫功能调节的研究进展[J]. 中国现代中药, 2013, 4 (15): 287–290. |
[49] | Akao T, Kawabata K, Yanagisawa E, et al. Balicalin, the predominant flavone glucuronide of scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form[J]. J Pharm Pharmacol, 2000, 52 (12): 1563–1568. DOI:10.1111/(ISSN)2042-7158 |
[50] | Bae EA, Han MJ, Kim EJ, et al. Transformation of ginseng saponins to ginsenoside Rh-2 by acids and human intestinal bacteria and biological activities of their transformants[J]. Archiv Pharm Res, 2004, 27 (1): 61–67. DOI:10.1007/BF02980048 |
[51] | 周鹏飞, 王建壮, 庞小雄, 等. 离体培养人肠道菌群对芦丁代谢的研究[J]. 广东药学院学报, 2011, 27 (6): 582–586. |
2. Tianjin Second People's Hospital, Tianjin 300192, China