文章信息
- 李红蓉, 赵齐飞, 尹玉洁, 常丽萍, 贾振华
- LI Hongrong, ZHAO Qifei, YIN Yujie, CHANG Liping, JIA Zhenhua
- 通心络胶囊治疗心肌纤维化作用研究进展
- Advances in the treatment of myocardial fibrosis by Tongxinluo Capsule
- 天津中医药, 2020, 37(5): 590-594
- Tianjin Journal of Traditional Chinese Medicine, 2020, 37(5): 590-594
- http://dx.doi.org/10.11656/j.issn.1672-1519.2020.05.21
-
文章历史
- 收稿日期: 2019-12-30
2. 河北以岭医药研究院, 国家中医药管理局重点研究室, 石家庄 050035;
3. 络病研究与创新中药国家重点实验室, 石家庄 050091
心肌纤维化是多种心血管疾病发展至终末阶段的共同病理改变[1]。各种原因导致的冠脉微循环障碍以及由此引发的缺血、炎症、内皮间质转分化等是心肌纤维化的重要诱因。脉络学说认为各种原因所致的络脉瘀阻是心肌纤维化病变的中心环节,通络代表药物通心络胶囊可以通过改善冠脉微循环抑制心肌梗死、糖尿病、心肌炎等导致的心肌纤维化。文章就中西医对心肌纤维化的病理认识及通心络胶囊对心肌纤维化的抑制作用进行综述。
1 西医学对心肌纤维化的认识心肌纤维化是指心肌间质胶原网络在心肌缺血、全身性疾病、药物或任何其他有害刺激对循环系统或心脏本身产生影响时发生的各种定量或定性变化。持续性高血压、代谢紊乱、瓣膜性心脏病、缺血性损伤或弥漫性心肌病等都可以使细胞因子、趋化因子、生长因子、蛋白酶、激素和活性氧等促纤维化和抗纤维化因子平衡失调而引起细胞外基质构成发生改变,导致心肌纤维化的发生[2-3]。胶原纤维合成增加并过度积聚是心肌纤维化的特征性表现[4-5]。心肌纤维化改变了心脏正常的组织结构,使心肌顺应性降低、心室进行性扩张,导致心功能下降、室壁瘤形成、心律失常,甚至心脏破裂[6]。
心肌细胞凋亡、心肌成纤维细胞增殖并转换为肌成纤维细胞、血管内皮细胞间质转分化等都是心肌纤维化的重要病理改变[7]。冠脉微循环是心肌代谢的主要场所,通过代谢、肌源性等调节机制实现对不同代谢水平心肌灌注和能量供应的有效调节。冠脉微循环障碍引起心脏内环境改变,导致心肌细胞不可逆损伤并迅速被成纤维细胞代替。冠脉微循环障碍引起缺血、炎症等病理因素可以刺激心肌成纤维细胞迁移、增殖并合成主要由Ⅰ型和Ⅲ型胶原蛋白组成的细胞外基质,导致心肌纤维化的发生[8]。冠脉微循环自身结构损伤,如内皮细胞发生间质转分化和平滑肌细胞病理性增殖也是导致心肌纤维化的重要原因[9]。冠脉微循环障碍还可以影响自分泌和旁分泌及整体循环神经分泌功能,使白介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、血管紧张素Ⅱ(AngⅡ)、转化生长因子(TGF-β)、利钠肽、血清半乳糖凝集素3(Galectin-3)、蛋白激酶C(PKC)、氧自由基等产生增加,导致心肌纤维化的发生[10]。
2 脉络学说对心肌纤维化的认识脉络学说是研究脉络生理特点、脉络病变发生发展规律、基本病理变化、临床证候特征和辨证治疗用药的临床应用理论。多种致病因素损伤脉络功能结构以及脏腑组织继发性的各种病机变化与病理类型是脉络学说研究的重要内容,西医学往往重视冠心病、脑梗死、周围血管病等独立病种的研究,脉络学说将其归为脉络病变。脉络病变基本病机包括络气虚滞/郁滞、脉络瘀阻、脉络绌急、脉络瘀塞、络息成积、热毒滞络、脉络损伤、络虚不荣等。
络息成积为脉络病变的基本病理变化之一,是由于脉络瘀阻或瘀塞引起的多脏器病变的病理演变过程,包括心肌纤维化、肺纤维化、慢性心力衰竭等疾病[11]。脉络具有渗灌气血、濡养代谢、津血互换的作用,渗灌濡养指由血脉输布而至的血液到达脉络,在逐级细分的脉络网络中层层渗灌至脏腑组织并在脉络末端完成与脏腑组织间的濡养代谢,此作用需要营卫交会生化功能的正常发挥。外感六淫、内伤七情、饮食不节、劳逸过度等致病因素导致心络瘀阻可以引起心络渗灌气血、濡养代谢的功能异常,最终导致络息成积的病理变化。这与西医学所说冠状动脉微循环障碍引起心肌纤维化的病理过程密切相关[12]。
3 通心络胶囊抑制心肌纤维化通心络胶囊是脉络学说指导研制的复方中成药,由人参、水蛭、全蝎、赤芍、蝉蜕、土鳖虫、蜈蚣、檀香、降香、乳香(制)、酸枣仁(炒)、冰片等药物组成,有益气活血、通络止痛的功效,体现了脉络病变调营卫气血的治疗原则。现代研究表明,通心络胶囊具有血液、血管、心脏全程保护作用,可以显著改善冠状动脉微循环并减轻炎症和氧化反应,直接或间接地保护心肌细胞[13-16]。
3.1 通心络胶囊抑制心肌纤维化的作用心肌梗死引起的心脏微循环障碍、炎症、缺氧等均可以导致心肌纤维化的发生,采用结扎冠状动脉前降支的方法建立大鼠心肌梗死后心肌纤维化模型,结果显示通心络胶囊可以通过抑制TGF-β1/Smad信号通路减少心脏胶原沉积,抑制心肌纤维化和左室重构,显著改善心梗大鼠心功能[17]。究其原因,可能与通心络胶囊激活Notchl/Jaggedl/血管内皮生长因子(VEGF)信号通路,促进梗死边缘区微血管新生,改善心肌供血有关[18]。
心肌病变是糖尿病的重要并发症之一,心肌间质胶原纤维沉积和心肌纤维化是糖尿病心肌病变的重要特征。采用高脂饮食及链脲菌素腹腔注射建立糖尿病心肌病模型,结果显示通心络胶囊可以抑制心脏TGF-β1/Smad信号通路活化,减少Ⅰ、Ⅲ型胶原的分泌并调节TGF-β1、基质金属蛋白酶(MMP)及基质金属蛋白酶组织抑制剂(TIMP)之间的平衡,减轻心脏纤维化,从而改善糖尿病心肌病变大鼠心功能[19-20]。
心肌炎亦可以导致心肌纤维化,通心络胶囊可以降低病毒性心肌炎小鼠转化生长因子和血小板衍生生长因子的表达和心脏胶原含量,抑制小鼠心肌纤维化[21]。近期研究表明,通心络还可以通过抑制Notch1/Jagged1/VEGF信号通路和Hif-1α/TGF-β1/Smad2/活缔组织生长因子(CTGF)信号通路抑制心梗后心脏微血管内皮细胞间质转分化[18],亦可以通过激活神经调节蛋白1(NRG-1)/ErbB/磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)信号通路抑制缺氧诱导的人心脏微血管内皮细胞发生内皮间质转分化[22]。现有证据表明,通心络可以改善冠脉微循环,保护心肌细胞并抑制肌成纤维细胞增殖和心脏微血管内皮细胞间质转分化,对于心肌纤维化具有显著抑制作用。
3.2 通心络胶囊相关单体成分抑制心肌纤维化作用通心络的主要成分人参皂苷Rg1、人参皂苷Rb1、芍药苷等[23]也显示出抗纤维化的作用。人参皂苷Rg1可以通过抑制Wnt/β-catenin而抑制高糖诱导的心肌成纤维细胞增殖[24],也可以通过抑制细胞外调节激酶(ERK)1/2、Smad2/3磷酸化调控CTGF、MMP9、TGF-β1的表达,抑制脂多糖诱导的心肌纤维化作用[25]。人参皂苷Rg1还可以抑制TGF-β1诱导的肝癌HepG2细胞的上皮间质转分化[26]及大鼠肾小管上皮细胞(NRK-52E)的上皮间质转分化[27]。此外,人参皂苷Rb1和芍药苷可以通过TGF-β1/Smad和Wnt/β-catenin等信号通路抑制肾小管上皮细胞间质转分化[28]、肺泡上皮细胞间质转分化[29]、卵巢癌细胞发生上皮间质转分化[30]、肾间质纤维化[31]和肺间质纤维化[32]。这些可能是通心络抑制心肌纤维化的有效物质基础。
4 结语冠状动脉微循环障碍致心肌纤维化的认识与脉络学说的认识具有一致性[33]。通心络胶囊治疗心肌纤维化有充分的理论基础和确切的细胞及动物实验证据,此外,除了心肌纤维化的诊断金标准心肌活检外,心脏磁共振技术可以精准无创地对心肌纤维化进行定性定量的鉴别评估[34],而且许多生物标志也被提出用于无创性评估心肌纤维化[35]。基于此可以进行正规的临床试验以观察通心络的抑制心肌纤维化作用。
微循环障碍是组织器官发生纤维化的关键因素。糖尿病可以引起肾脏微循环障碍导致肾纤维化,已有研究表明,通心络胶囊可以改善肾脏微循环,抑制糖尿病肾纤维化,改善肾功能[36-37]。微循环障碍同样可以引起肺纤维化、肝硬化和系统性硬化等多种疾病。肺泡毛细血管膜完整性破坏、血管修复和重塑异常均被认为是肺纤维的致病机制[38-39]。肝硬化患者存在明显的异质性微血管病变和血流动力学紊乱[40],并有证据表明改善肝脏微循环可以有效改善肝硬化的系统症状[41]。系统性硬化也被认为是一种血管性疾病[42],微血管损伤和外周灌注减少是系统性硬化症的典型特征,具有重要的临床意义[43-44]。据此推测通心络胶囊可以通过改善组织微循环发挥抑制肺纤维、肝硬化和系统性硬化的作用。
[1] |
GYÖNGYÖSI M, WINKLER J, RAMOS I, et al. Myocardial fibrosis:biomedical research from bench to bedside[J]. European Journal of Heart Failure, 2017, 19(2): 177-191. |
[2] |
WEBER K T, PICK R, JALIL J E, et al. Patterns of myocardial fibrosis[J]. Journal of Molecular and Cellular Cardiolgy, 1989, 21(5): 121-131. |
[3] |
HEYMANS S, GONZLEZ A, PIZARD A, et al. Searching for new mechanisms of myocardial fibrosis with diagnostic and/or therapeutic potential[J]. European Journal of Heart Failure, 2015, 17(8): 764-771. DOI:10.1002/ejhf.312 |
[4] |
KONG P, CHRISTIA P, FRANGOGIANNIS N. The pathogenesis of cardiac fibrosis[J]. Cellular and Molecular Life Sciences, 2014, 71(4): 549-574. DOI:10.1007/s00018-013-1349-6 |
[5] |
LI A H, LIU P P, Villarreal F J, et al. Dynamic changes in myocardial matrix and relevance to disease:translational perspectives[J]. Ccirculation Research, 2014, 114(5): 916-927. DOI:10.1161/CIRCRESAHA.114.302819 |
[6] |
WEBER K T, SUN Y, BHATTACHARYA S K, et al. Myofibroblast mediated mechanisms of pathological remodelling of the heart[J]. Nature Reviews Cardiology, 2013, 10(1): 15-26. |
[7] |
LIU T, SONG D, DONG J, et al. Current understanding of the pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure[J]. Frontiers in Physiology, 2017(8): 238. |
[8] |
王禹川, 丁燕生, 刘梅林. 不同因子致心肌纤维化分子学机制[J]. 医学综述, 2012, 18(17): 2736-2740. WANG Y C, DING Y S, LIU M L. The molecular mechanism of different factors caused myocardial fibrosis[J]. Medical Recapitulate, 2012, 18(17): 2736-2740. DOI:10.3969/j.issn.1006-2084.2012.17.003 |
[9] |
KOVACIC J C, MERCADER N, TORRES M, et al. Epithelial to mesenchymal and endothelial to mesenchymal transition:from cardiovascular development to disease[J]. Circulation, 2012, 125(14): 1795-1808. DOI:10.1161/CIRCULATIONAHA.111.040352 |
[10] |
李轶男, 王萍, 陈晖. 冠状动脉微循环障碍对心肌纤维化的影响及研究现状[J]. 中国介入心脏病学杂志, 2018, 26(8): 468-471. LI Y N, WANG P, CHEN H. Effect of coronary microcirculatory disturbance on myocardial fibrosis and its research status[J]. Chinese Journal of Interventional Cardiology, 2018, 26(8): 468-471. DOI:10.3969/j.issn.1004-8812.2018.08.010 |
[11] |
柳金英, 张惠敏, 田蕾, 等. "瘀毒"致心力衰竭心肌纤维化理论依据初探[J]. 中华中医药杂志, 2018, 33(9): 4027-4030. LIU J Y, ZHANG H M, TIAN L, et al. Theoretical research on "stasis-toxin" in myocardial fibrosis of heart failure[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2018, 33(9): 4027-4030. |
[12] |
SELTHOFER-RELATIC K, MIHALJ M, KIBEL A, et al. Coronary microcirculatory dysfunction in human cardiomyopathies:a pathologic and pathophysiologic review[J]. Cardiology in Review, 2017, 25(4): 165-178. DOI:10.1097/CRD.0000000000000140 |
[13] |
吴以岭. 脉络学说构建及其指导血管病变防治药物的研究[J]. 实用心电学杂志, 2018, 27(4): 229-233. WU Y L. Construction of collateral theory and its guidance on preventive and therapeutic medication for vascular diseses[J]. Journal of Practical Electrocardiology, 2018, 27(4): 229-233. |
[14] |
崔贺贺.通心络对心脏微血管内皮缺血再灌注损伤的保护机制研究[D].北京: 北京协和医学院, 2014. CUI H H. Induction of autophagy by Tongxinluo via the MEK/ERK pathway protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury[D]. Beijing: Peking Union Medical College, 2014. |
[15] |
赵宏杰, 郭利平, 杨丰文, 等. PCI术后中西药联用的临床研究现状分析[J]. 天津中医药, 2018, 35(12): 916-920. ZHAO H J, GUO L P, YANG F W, et al. Analysis of status on clinical research of integrative Chinese and Western medicine treatments after percutaneous coronary intervention[J]. Tianjin Journal of Traditional Chinese Medicine, 2018, 35(12): 916-920. DOI:10.11656/j.issn.1672-1519.2018.12.12 |
[16] |
邹澍宣, 赵英强, 郑偕扣. 通心络胶囊不同剂量治疗冠心病心绞痛疗效观察[J]. 天津中医药, 2006, 23(3): 198-199. ZHOU S X, ZHAO Y Q, ZHENG X K. Clinical Effect of Different Doses of Tongxinluo Capsule on Angina Pectoris in Coronary Heart Disease[J]. Tianjin Journal of Traditional Chinese Medicine, 2006, 23(3): 198-199. DOI:10.3969/j.issn.1672-1519.2006.03.007 |
[17] |
洪长江, 邱健, 徐琳. 通心络胶囊对心肌梗死模型大鼠MMP-2和TIMP-1表达的影响[J]. 现代生物医学进展, 2010, 10(13): 2445-2510. HONG C J, QIU J, XU L. Effects of Tongxinluo capsule on the expression of MMP-2 and TIMP-1 in rats with myocardial infarction[J]. Progress in Modern Biomedicine, 2010, 10(13): 2445-2510. |
[18] |
王思颖.通心络对大鼠心肌梗死缺血去微血管新生及纤维化的作用机制研究[D].北京: 北京中医药大学, 2016. WANG S Y. Study on the mechanism of Tongxinluo on microangiogenesis and fibrosis in ischemic area of myocardial infarction in rats[D]. Beijing: Beijing University of traditional Chinese Medicine, 2016. |
[19] |
王小梅, 穆长征, 赵田田, 等. 通心络对糖尿病大鼠心肌纤维化的防治作用[J]. 中国生化药物杂志, 2012, 33(5): 559-562. WANG X M, MU C Z, ZHAO T T, et al. The prevention role and treatment effect of Tongxinluo ultrafine powder on myocardial fibrosis in diabetic rats[J]. Chinese Journal of Biochemical Pharmaceutics, 2012, 33(5): 559-562. |
[20] |
赵田田, 王晓梅. 中药通心络对糖尿病大鼠心肌纤维化的影响[J]. 中国老年学杂志, 2011, 31(1): 95-98. ZHAO T T, WANG X M. Effect of Tongxinluo ultrafine powder on myocardial fibrosis of rats with diabetes mellitus[J]. Chinese Journal of Gerontology, 2011, 31(1): 95-98. DOI:10.3969/j.issn.1005-9202.2011.01.041 |
[21] |
忻尚平.通心络对病毒性心肌炎慢性期心肌纤维化作用的实验研究[D].杭州: 浙江中医药大学, 2006. XIN S P. Experimental study about the effect of Tongxinluo on myocardial fibrosis in chronic stage of viral myocarditis rats[D]. Hangzhou: Zhejiang University of Traditional Chinese Medicine, 2006. |
[22] |
YIN Y, ZHANG Q, ZHAO Q, et al. Tongxinluo attenuates myocardiac fibrosis after acute myocardial infarction in rats via inhibition of endothelial to mesenchymal transition[J]. Biomed Research International, 2019, 6595437. |
[23] |
CHEN W Q, ZHONG L, ZHANG L, et al. Chinese medicine Tongxinluo significantly lowers serum lipid levels and stabilizes vulnerable plaques in a rabbit model[J]. Journal of Ethnopharmacology, 2009, 124(1): 103-110. DOI:10.1016/j.jep.2009.04.009 |
[24] |
韩路拓, 任钧国, 杨佳妹, 等. 人参皂苷Rg1对高糖培养的心肌成纤维细胞Wnt信号通路的影响[J]. 北京中医药大学学报, 2014, 37(11): 758-766. HAN L T, REN J G, YANG J M, et al. Effects of ginsenoside Rg1 on Wnt signal pathway of cardiac fibroblasts cultured in high concentration glucose[J]. Journal of Beijing University of Traditional Chinese Medicine, 2014, 37(11): 758-766. DOI:10.3969/j.issn.1006-2157.2014.11.009 |
[25] |
尚家星.人参皂苷Rh1抑制LPS诱导大鼠H9c2心肌细胞纤维化及信号机制的研究[D].昆明: 昆明医科大学, 2014. SHANG J X. Ginsenosides Rg1 restrains fibrosis in H9c2 cardiomyocytes induced by lipopolysaccharide[D]. Kunming: Kunming Medical University, 2014. |
[26] |
YU M, YU X, GUO D, et al. Ginsenoside Rg1 attenuates invasion and migration by inhibiting transforming growth factor-β1-induced epithelial to mesenchymal transition in HepG2 cells[J]. Molecular Medicine Reports, 2015, 11(4): 3167-3173. DOI:10.3892/mmr.2014.3098 |
[27] |
XIE X S, YANG M, LIU H C, et al. Gisenoside Rg1, a major active component isolated from Panax notoginseng, restrains tubular epithelial to myofibroblast transition in vitro[J]. Journal of Ethnopharmacology, 2009, 122(1): 35-41. DOI:10.1016/j.jep.2008.11.020 |
[28] |
ZENG J, DOU Y, GUO J, et al. Paeoniflorin of Paeonia lactiflora prevents renal interstitial fibrosis induced by unilateral ureteral obstruction in mice[J]. Phytomedicine, 2013, 20(8-9): 753-759. DOI:10.1016/j.phymed.2013.02.010 |
[29] |
JI Y, DOU Y N, ZHAO Q W, et al. Paeoniorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway[J]. Acta Pharmacologica Sinica, 2016, 7(6): 794-804. DOI:10.1038/aps.2016.36 |
[30] |
LIU D, LIU T, TENG Y, et al. Ginsenoside Rb1 inhibits hypoxia induced epithelial mesenchymal transition in ovarian cancer cells by regulating microRNA-25[J]. Experimental and Therapeutic Medicine, 2017, 14(4): 2895-2902. DOI:10.3892/etm.2017.4889 |
[31] |
XIE X S, LIU H C, YANG M, et al. Gisenoside Rb1, a Panoxadiol Saponin against Oxidative Damage and Renal Interstitial in Rats with Unilateral Ureteral Obstruction[J]. Chinese Journal of Integrative Medicine, 2009, 15(2): 133-140. DOI:10.1007/s11655-009-0133-9 |
[32] |
ZENG J, DOU Y, GUO J, et al. Paeoniflorin, the main active constituent of Paeonia lactiflora roots, attenuates bleomycin-induced pulmonary fibrosis in mice by suppressing the synthesis of type I collagen[J]. Journal of Ethnopharmacology, 2013, 149(3): 825-832. DOI:10.1016/j.jep.2013.08.017 |
[33] |
赵齐飞, 李红蓉, 尹玉洁, 等. 芪苈强心胶囊治疗慢性心力衰竭作用机制研究进展[J]. 天津中医药, 2019, 36(4): 313-318. ZHAO Q F, LI H R, YIN Y J, et al. Research progress on the effect and mechanism of Qili Qiangxin Capsule in treating chronic heart failure[J]. Tianjin Journal of Traditional Chinese Medicine, 2019, 36(4): 313-318. |
[34] |
Everett R J, Stirrat C G, Semple S I, et al. Assessment of myocardial fibrosis with T1 mapping MRI[J]. Clin Radiol, 2016, 71(8): 768-778. DOI:10.1016/j.crad.2016.02.013 |
[35] |
López B, González A, Ravassa S, et al. Circulating Biomarkers of Myocardial Fibrosis:The Need for a Reappraisal[J]. Journal of the American College of Cardiology, 2015, 65(22): 2449-2456. DOI:10.1016/j.jacc.2015.04.026 |
[36] |
张诚.通心络超微粉联合津力达颗粒对糖尿病大鼠的肾脏防治作用及其对TGF-β1/Smad信号转导通路的影响[D].石家庄: 河北医科大学, 2014. Zhang C. The renal protective effects of Tongxinluo micronized powder combined Jinlida on diabetic rats and its impacts to the TGF-β1/Smad signal pathway[D]. Shijiazhuang: Hebei Medical University, 2014. |
[37] |
仝宇, 高彦彬, 王晓磊, 等. 通心络调控p38MAPK通路抑制细胞外基质沉积的研究[J]. 环球中医药, 2017, 10(2): 146-150. Tong Y, Gao Y B, Wang X L, et al. Research of Tongxinluo regulates and controls the expressions of p38 MAPK and extracellular matrix deposition[J]. Global Traditional Chinese Medicine, 2017, 10(2): 146-150. DOI:10.3969/j.issn.1674-1749.2017.02.004 |
[38] |
Barratt S, Millar A. Vascular remodelling in the pathogenesis of idiopathic pulmonary fibrosis[J]. QJM:Monthly Journal of the Association of Physicians, 2014, 107(7): 515-519. DOI:10.1093/qjmed/hcu012 |
[39] |
Magro CM, Allen J, Pope-Harman A, et al. The role of microvascular injury in the evolution of idiopathic pulmonary fibrosis[J]. American Journal of Clinical Pathology, 2003, 119(4): 556-567. DOI:10.1309/0B06Y93EGE6TQ36Y |
[40] |
Davies T, Wythe S, O'Beirne J, et al. Review article:the role of the microcirculation in liver cirrhosis[J]. Alimentary Pharmacology Therapeutics, 2017, 46(9): 825-835. DOI:10.1111/apt.14279 |
[41] |
Yang Y Y, Lin H C. Alteration of intrahepatic microcirculation in cirrhotic livers[J]. Journal of the Chinese Medical Association, 2015, 78(8): 430-437. DOI:10.1016/j.jcma.2015.05.005 |
[42] |
Mostmans Y, Cutolo M, Giddelo C, et al. The role of endothelial cells in the vasculopathy of systemic sclerosis:A systematic review[J]. Autoimmunity Reviews, 2017, 16(8): 774-786. DOI:10.1016/j.autrev.2017.05.024 |
[43] |
Ruaro B, Sulli A, Smith V, et al. Microvascular damage evaluation in systemic sclerosis:the role of nailfold videocapillaroscopy and laser techniques[J]. Reumatismo, 2017, 69(4): 147-155. DOI:10.4081/reumatismo.2017.959 |
[44] |
尹玉洁, 张倩, 王亚芬, 等. 基于脉络学说探析心肌梗死后心肌纤维化[J]. 天津中医药, 2019, 36(5): 421-425. YIN Y J, ZHANG Q, WANG Y F, et al. Discussion on myocardial fibrosis post myocardial infarction based on vessel-collateral doctrine[J]. Tianjin Journal of Traditional Chinese Medicine, 2019, 36(5): 421-425. |
2. Hebei Yiling Medical Research Institute, Key Laboratory of State Administration of Traditional Chinese Medicine, Shijiazhuang 050035, China;
3. State Key Laboratory of Collateral Disease Research and Innovation of Traditional Chinese Medicine, Shijiazhuang 050091, China