天津中医药  2021, Vol. 38 Issue (1): 131-136

文章信息

牛红娟, 左祥宇, 庞宗然
NIU Hongjuan, ZUO Xiangyu, PANG Zongran
2型糖尿病肌少症中西医结合研究进展
Research progress of integrated traditional Chinese and Western medicine in type 2 diabetic mellitus with sarcopenia
天津中医药, 2021, 38(1): 131-136
Tianjin Journal of Traditional Chinese Medicine, 2021, 38(1): 131-136
http://dx.doi.org/10.11656/j.issn.1672-1519.2021.01.28

文章历史

收稿日期: 2020-09-10
2型糖尿病肌少症中西医结合研究进展
牛红娟 , 左祥宇 , 庞宗然     
中央民族大学药学院, 民族医药教育部重点实验室, 北京 100081
摘要:肌少症作为2型糖尿病(T2DM)的慢性并发症,严重降低老年人生活质量,加重医疗及社会负担。目前,西医对于肌少症诊断标准尚无统一认识,具体病因病机仍不明确,尚无针对性治疗方法。糖尿病会刺激老龄患者肌肉丢失加重,出现肌肉与脂肪成分改变。而血糖相较于年龄,可能对骨骼肌损害更为严重。骨骼肌作为胰岛素最大的靶器官,肌肉蛋白质代谢紊乱可能是糖尿病肌少症关键病机。中医认为"脾主肌肉",临床观察与T2DM肌少症发病的可能机制高度相关,且可用于中医内外治疗的理论指导。通过对糖尿病肌少症中西医研究进展综述,旨在为疾病机制阐释及中医防控提供新思路。
关键词2型糖尿病    肌少症    脾主肌肉    蛋白质代谢    

糖尿病是一组以高血糖为典型临床特征的慢性代谢性疾病。流行病学数据显示,中国目前约有1.164亿糖尿病患者,居世界首位。同时也是老年糖尿病患者最多的国家,人数已达3 550万,主要为2型糖尿病(T2DM)[1]。肌少症是一种与增龄相关,以肌肉质量降低,力量和功能逐渐丧失为临床表现的疾病。衰老相关的肌少症使老年人虚弱、跌倒、残疾、住院及死亡风险增加,严重降低了老年人生活质量,在一定程度上加重了医疗及社会负担[2-3]。目前,全球肌少症患病人数约5千万[4]。肌肉衰减常与T2DM并存,且随着年龄增长,两者患病率均呈显著上升趋势[5]。T2DM对骨骼肌退行性病变具有加剧作用,研究认为肌少症可作为糖尿病又一慢性并发症[6]。文章综述了近年来中西医对糖尿病肌少症的研究,以期对疾病有进一步认识。

1 肌少症的现代医学认识 1.1 肌少症的定义与诊断

1989年美国学者Irwin Rosenberg首次将与增龄相关的“骨骼肌质量与功能丧失”命名为肌少症[7]。2011年国际肌少症工作组定义为:与增龄相关的进行性、全身肌量减少和/或肌强度下降或肌肉生理功能减退的疾病[8]。肌少症包括肌肉质量、强度与功能3个方面损害。

由于饮食、环境、体型特征及种族的差异,目前国际上各地区肌少症工作组形成了各自本土化的肌少症共识,但尚无统一的诊断标准。1998年Baumgartner等[9]发表了最早的诊断标准,即根据四肢骨骼肌量指数评价肌少症,但仅限于肌肉质量减少程度的评估。后续制定的欧洲老年骨骼肌减少症工作组(EWGSOP)、肌少症亚洲工作组(AWGS)及美国国家卫生研究院诊断共识,逐步增加了肌肉力量及功能的诊断项目,并为诊断变量指定了分界点,完善了内容。2019年EWGSOP强调将肌肉力量作为肌少症的第1个组成部分[10],突出了肌力在肌少症诊断中的重要性。目前中国使用的是AWGS制定的诊断标准[11]:1)应用双能X射线吸收法(男性 < 7.0 kg/m2,女性 < 5.4 kg/m2)或生物电阻抗法(男性 < 7.0 kg/m2,女性 < 5.7 kg/m2)测定四肢骨骼肌质量指数。2)使用握力测定肌肉力量:男性 < 26 kg,女性 < 18 kg。3)用步速测定身体活动能力,6 min步行试验步速 < 0.8 m/s。符合1)且满足2)和/或3)可诊断为肌少症。

1.2 肌少症的疾病特征

随着年龄增长,机体衰老将导致身体成分变化,如肌肉量加速丢失,脂肪量及体脂率增加[12],表明机体肌肉和脂肪比例出现变化。通过分别对比肌少症患者和健康受试者脂肪与肌肉的质量,发现患者各部位脂肪与全身各成分总和比例、躯干脂肪占全身脂肪比例、躯干脂肪与四肢肌肉比例均高于健康受试者[13]。以上成分比例改变,说明肌少症状态下脂肪成分增加,主要表现为躯干部位的脂肪堆积即中心性肥胖。肌少症表现出脂肪的增加与肌肉的萎缩,从而导致脂肪/肌肉比例升高。

身体成分改变可能与骨骼肌中卫星细胞本身多功能分化特性有关。卫星细胞是组织特异性干细胞,在不同诱导条件下,可分化为肌肉或脂肪细胞[14],其脂肪分化功能与骨骼肌Ⅰ型类肌纤维呈正相关。也有研究表明肌肉与脂肪的增减变化可能归因于肌肉代谢改变及胰岛素抵抗(IR)[15]。糖尿病状态下骨骼肌中microRNA-106表达量增加,自噬水平下降,骨骼肌中脂肪沉积加剧,肌肉出现萎缩[16],说明糖尿病是身体成分变化的一个刺激因素。

1.3 糖尿病与肌少症的关联

肌肉质量、功能和形态的改变与年龄密切相关。生理状态下,肌肉丢失速度随年龄增加而逐渐加剧。肌肉质量下降最早源于成年人早期,以2型肌纤维萎缩为起始,持续一生。而肌肉功能下降可能从35岁开始,50岁后开始加速,每10年下降约10%[17]。肌纤维数量随年龄增长而减少,同时肌肉横截面积也缩小了25%~35%[18]。此外,骨骼肌形态的变化还包括组织中卫星细胞数量减少,肌肉与肌腱连接减弱[19],所有改变都会对骨骼肌功能及受损后的再生能力产生影响。

肌少症与糖代谢不良具有一定相关性[20-21]。研究表明肌量降低是诱发糖尿病的早期影响因素,或为疾病发生的预测因子[22-24]。而IR也可能是骨骼肌健康受损的一个预测因素[25]。因此,骨骼肌损害与糖尿病之间存在双向关联。糖尿病通过诱导肌量损失,肌力下降,活动能力减弱及肌纤维类型改变等途径诱发或加重骨骼肌退行性病变,其可被视为糖尿病的并发症。糖尿病患者肌量减少与病程长短和糖化血红蛋白呈现正相关[26]。长期血糖控制不佳则肌少症发生率越高。

肌少症发生发展与年龄、糖尿病两个因素均呈相关性。研究表明无论是1型糖尿病(T1DM)啮齿类动物还是年轻人,其骨骼肌表现出与老年骨骼肌一致的卫星细胞含量显著降低,且均先于其他并发症出现[27-29]。临床上,在高血糖青少年患者和40~49岁年龄段的T1DM患者中均能观察到肌肉质量损失[30-31]。细胞水平上,两种情况线粒体的结构和代谢改变有相似之处,即氧化能力降低[32]。中年和75岁以上新发T2DM患者中,腹部肥胖与肌肉衰减更常见。此外,老年骨骼肌质量较中年明显降低,肌肉减少与糖尿病的关联更为显著[33],可能是由于老年患者具有更高IR和相对保留的β-细胞功能。对于骨骼肌的损害,血糖相较于年龄可能是更为决定性的影响因素。

1.4 糖尿病肌少症的病理机制

目前研究认为肌少症与表观遗传、激素、营养及代谢变化等因素相关。潜在的生物标志物可能包括肌肉蛋白稳态、炎症介导通路、胰岛素、氧化应激相关因子[34]。但糖尿病相关肌少症的发病机制尚未得以阐明,骨骼肌作为机体最大的胰岛素靶器官,肌肉蛋白稳态可能是疾病发生最直接且最关键的病机。

胰岛素通过调控氨基酸转运,可促进蛋白质合成并抑制蛋白质分解,调节肌肉蛋白质平衡[35-36]。而IR可降低餐后骨骼肌内蛋白质的合成[37],还可通过抑制胰岛素样生长因子1(IGF-1)作用,使调控合成代谢的关键信号转导通路系统中的调控因子磷脂酰肌醇3蛋白激酶功能降低,从而导致合成减少。泛素-蛋白酶体依赖性途径是细胞内最主要的蛋白降解系统,在其介导的骨骼肌蛋白质分解代谢过程中,与IR密切相关的叉头框蛋白(FoxOs)转录因子家族发挥了重要的调节作用。FoxO1和FoxO3在肌萎缩时被激活,通过激活泛素连接酶肌肉萎缩盒F蛋白(MAFbx/Atrogin-1)的表达,从而导致骨骼肌蛋白丢失[38-39],而IGF-1可以通过抑制Akt/FoxO信号通路,可阻止肌肉环状指蛋白1和MAFbx/Atrogin-1的转录上调,从而抑制骨骼肌萎缩。IR通过影响肌肉蛋白质合成与分解代谢途径中的信号通路,使蛋白质调节稳态系统失衡,从而加剧骨骼肌丢失。

1.5 糖尿病肌少症的西医治疗

现代医学对疾病的治疗策略主要包括药物治疗,饮食支持与运动疗法,有待于系统的开展研究。

目前国内外尚无理想的治疗肌少症的药物。降糖药在一定程度上对肌肉状态具有影响。胰岛素可以促进肌肉细胞对血液中葡萄糖的吸收,促进蛋白质的合成,增加肌肉质量[40]。同样,胰岛素增敏剂,胰高血糖素样肽-1受体激动剂也被证明对糖尿病患者的肌肉含量具有改善作用[41]。然而,二甲双胍会同时降低体质量和肌肉质量,增加肌少症患病可能性。格列本脲与格列奈类中的瑞格列奈等胰岛素促泌剂可大大增加肌肉萎缩风险[42]。关于降糖药对防治老年糖尿病肌少症发生的有效性及安全性研究仍处于初步探索阶段,需要进一步开展。除降糖药外,还出现了干细胞治疗[43],益生菌制剂[44]等新兴的治疗方法。

营养摄入不足是肌少症的主要危险因素。氨基酸尤其是支链氨基酸,对于胰岛素促进肌肉蛋白质合成具有直接作用。亮氨酸与缬氨酸等支链氨基酸不仅可以作为骨骼肌蛋白质合成的原料,在信号传导和基因转录调控中可发挥细胞信号分子的作用[45],影响合成代谢。同时,对于胰岛素敏感性及T2DM具有重要作用[46]。补充氨基酸可作为一种有效的治疗方法。此外,适量维生素D的补充对老年人肌纤维萎缩,肌力下降具有改善作用,可减少跌倒风险。

运动对于糖尿病和肌少症管理具有重要作用。合适的抗阻训练结合有氧运动会增加胰岛素敏感性,有效控制血糖和体质量。同时可延缓肌肉量丢失,减少活动障碍的发生。

2 肌少症的中医学认识 2.1 脾与糖尿病肌少症

中医并无肌少症病名。根据患者临床症状表现,认为其应归属于中医“痿证”范畴。清代医家言:“肉是人身之阴质,脾为太阴,主化水谷以生肌肉。”表明肌肉生理病理的改变与脾脏密切相关。

“脾主肌肉”是中医整体观念的重要内容。《四圣心源》言:“肌肉者,脾土之所生也,脾气盛则肌肉丰满而充实。”肌肉生理功能与脾脏息息相关。生理状态下,脾为气血生化之源,具有运化、升清、统血的功能,脾气运化水谷精微可用于滋养四肢肌肉。故脾气健运,四肢肌肉营养充足,全身肌肉壮实丰盈,并发挥其收缩运动的功能,维持自身柔韧性。《黄帝内经·素问》言:“脾病……筋骨肌肉皆无气以生,故不用焉。”反之,病理状态下,脾失健运,脾脏功能异常则肌肉失于水谷精微的滋养,营养缺乏则四肢软弱无力甚至萎废失用。临床常根据“脾主肌肉”的理论用于肌肉痹痿证的指导治疗[47]。脾脏功能的正常对于肌肉形态功能的维持具有重要作用。

“脾主运化”是脾脏最基本的功能,是维持机体藏象功能活动的核心。脾能将水谷运化生成精微物质,传输流动从而滋养五脏六腑与形体官窍,维持正常生理功能。脾失健运,则水谷内停于中焦而不得运化[48]。施今墨先生指出:“血糖者,饮食所化之精微也”。血糖的生理代谢属于脾运化水谷精微的过程。脾气健运,则将葡萄糖在内的水谷精微输布运送至全身,机体得以正常利用葡萄糖以供能,减少血脉中葡萄糖的升高。反之,脾失健运,则葡萄糖不能被正常输送利用,则滞留血脉内致使血糖升高。血液失却清纯状态,血浊日久,则导致疾病的发生发展[49]。中医认为糖络病分属上消、中消与下消,而T2DM归属于脾胃热盛的中消,即“脾瘅”类型。中焦脾胃运化无权则“精微不正化”为此病的核心病机[50]。由于长期湿热困脾,导致脾运化功能减弱,不能正常升清,精微物质得不到疏散,则不能濡养四肢肌肉,进而出现肌肉受损。因此,中医学认为“脾胃虚损”应是糖尿病肌少症的主要病机,以补脾益损为治疗该病的基本原则。

2.2 糖尿病肌少症的中医治疗

糖尿病与肌少症的中医药内治思路均主要集中于补益脾胃[51]。以益气健脾为主的参芪复方中重用人参益气,黄芪健脾生肌。实验研究表明其可改善糖尿病状态下糖脂代谢紊乱,同时还能保护骨骼肌[52]。健脾益气药四君子汤用于衰老大鼠可提高肌肉抗氧化能力,延缓骨骼肌衰老,减少损伤[53]。临床中以化湿健脾方治疗以四肢酸软肿痛为表现的湿热型肌少症,以益气运脾方用于手足无力症状的气虚型肌少症的辨症治疗[54],健脾益肾方治疗老年肌少症的脾肾两虚、寒湿内蕴证[55]。基于“脾主肌肉”理论,实验与临床中均以补益健运脾胃为肌肉相关疾病的治疗原则。

针刺外治疗法中提倡治痿原则为独取阳明。临床以痿三针联合运动治疗肌少症取得满意疗效[56]。分别选取足三里、三阴交、太溪三穴。足三里是足阳明胃经合穴,可调脾胃、补中气,除可增加肌肉力量外,还能改善虚弱。三阴交隶属脾经,可调理肝脾肾三阴经,刺激胫神经收缩,改善下肢力量。太溪穴为肾经原穴,可扶持正气,补益肾阴肾阳。三穴配合补脾益气,有效改善肌肉状态。同样,实验研究中取双侧肾俞、脾俞、足三里及大椎等补肾健脾、通经活络穴位针刺大鼠,肌肉含量可呈上升趋势[57]。以阳明胃经及相表里的脾经为主,并配以扶正益气穴位,可为肌少症的治疗提供针刺取穴思路。

中医内外治法中以健脾益气为治则,可充分发挥传统医学在糖尿病肌少症中的治疗优势。

3 总结与展望

糖尿病肌少症严重威胁老年人生活质量,系统认识疾病是临床与实验研究开展的基础。目前,西医对糖尿病肌少症的发病机制与治疗方法研究尚处于探索阶段。鉴于骨骼肌与胰岛素的关联,切入肌肉蛋白质代谢相关通路开展研究,可为疾病机制的阐释提供依据。基于中医“脾主肌肉”理论开展健脾益气中药及针灸的干预研究,可提供疾病的中医药防控新思路,发挥中医对糖尿病肌少症这一复杂疾病整体调控的独特优势。

参考文献
[1]
SAEEDI P, PETERSOHN I, SALPEA P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Research and Clinical Practice, 2019, 157: 107843. DOI:10.1016/j.diabres.2019.107843
[2]
REMELLI F, VITALI A, ZURLO A, et al. Vitamin D deficiency and sarcopenia in older persons[J]. Nutrients, 2019, 11(12): 2861. DOI:10.3390/nu11122861
[3]
SCHAAP L A, VAN SCHOOR N M, LIPS P, et al. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures:the longitudinal aging study Amsterdam[J]. Journal of Gerontology Series A-Biological Sciences and Medical Sciences, 2018, 73(9): 1199-1204. DOI:10.1093/gerona/glx245
[4]
崔梦钊.2型糖尿病患者发生肌少症的临床特点分析[D].长春: 吉林大学, 2018.
CUI M Z. Analysis of the clinical characteristics of sarcopenia in patients with type 2 diabetes mellitus[D]. Changchun: Jilin University, 2018.
[5]
BRIGGS A M, WOOLF A D, DREINHÖFER K, et al. Reducing the global burden of musculoskeletal conditions[J]. Bulletin of the World Health Organization, 2018, 96(5): 366-368. DOI:10.2471/BLT.17.204891
[6]
MALISZEWSKA K, ADAMSKA-PATRUNO E, KRȨTOWSKI A. The interplay between muscle mass decline, obesity, and type 2 diabetes[J]. Polish Archives of Internal Medicine, 2019, 129(11): 809-816.
[7]
LARSSON L, DEGENS H, LI M, et al. Sarcopenia:Aging-related loss of muscle mass and function[J]. Physiological Reviews, 2019, 99(1): 427-511. DOI:10.1152/physrev.00061.2017
[8]
FIELDING R A, VELLAS B, EVANS W J, et al. Sarcopenia:an undiagnosed condition in older adults. Current consensus definition:prevalence, etiology, and consequences. International working group on sarcopenia[J]. Journal of the American Medical Directors Association, 2011, 12(4): 249-256. DOI:10.1016/j.jamda.2011.01.003
[9]
BAUMGARTNER R N, KOEHLER K M, GALLAGHER D, et al. Epidemiology of sarcopenia among the elderly in New Mexico[J]. American Journal of Epidemiology, 1998, 147(8): 755-763. DOI:10.1093/oxfordjournals.aje.a009520
[10]
CRUZ-JENTOFT A J, BAHAT G, BAUER J, et al. Sarcopenia:revised European consensus on definition and diagnosis[J]. Age and Ageing, 2019, 48(1): 16-31. DOI:10.1093/ageing/afy169
[11]
CHEN L K, LIU L K, WOO J, et al. Sarcopenia in Asia:consensus report of the Asian Working Group for Sarcopenia[J]. Journal of the American Medical Directors Association, 2014, 15(2): 95-101. DOI:10.1016/j.jamda.2013.11.025
[12]
江崇民, 张一民, 张彦峰, 等. 中国城镇居民身体脂肪分布及增龄变化规律的研究[J]. 体育科学, 2008, 28(8): 16-28.
JIANG C M, ZHANG Y M, ZHANG Y F, et al. Study on body fat distribution of urban residents and change rule with age growth in China[J]. China Sport Science, 2008, 28(8): 16-28. DOI:10.3969/j.issn.1000-677X.2008.08.002
[13]
许雪娟, 陈景娴, 栾晓军, 等. 中老年少肌症与非酒精性脂肪肝的关联研究[J]. 中国医学创新, 2018, 15(13): 1-6.
XU X J, CHEN J X, LUAN X J, et al. Association between sarcopenia and non-alcoholic fatty liver disease in the middle-aged and elderly people[J]. Medical Innovation of China, 2018, 15(13): 1-6. DOI:10.3969/j.issn.1674-4985.2018.13.001
[14]
焦泽华, 魏著英, 白春玲, 等. 大鼠肌肉卫星细胞的分离、鉴定与诱导分化[J]. 农业生物技术学报, 2011, 19(2): 302-307.
JIAO Z H, WEI Z Y, BAI C L, et al. Isolation, identification and differentiation of rat muscle satellite cell[J]. Journal of Agricultural Biotechnology, 2011, 19(2): 302-307. DOI:10.3969/j.issn.1674-7968.2011.02.015
[15]
CREE M G, NEWCOMER B R, KATSANOS C S, et al. Intramuscular and liver triglycerides are increased in the elderly[J]. The Journal of Clinical Endocrinology & Metabolism, 2004, 89(8): 3864-3871.
[16]
杨翠萍, 郗光霞. 自噬与脂肪异位沉积[J]. 中华临床医师杂志(电子版), 2016, 10(18): 2776-2779.
YANG C P, XI G X. Autophagy and ectopic deposition of lipids[J]. Chinese Journal of Clinicians (Electronic Edition), 2016, 10(18): 2776-2779. DOI:10.3877/cma.j.issn.1674-0785.2016.18.020
[17]
张鸣生, 刘楠. 肌肉衰减综合征中国专家共识(草案)[J]. 中国综合临床, 2018, 34(3): 193-199.
ZHANG M S, LIU N. Consensus among Chinese experts on sarcopenia(draft)[J]. Clinical Medicine of China, 2018, 34(3): 193-199.
[18]
LEXELL J, HENRIKSSON-LARSÉN K, WINBLAD B, et al. Distribution of different fiber types in human skeletal muscles:effects of aging studied in whole muscle cross sections[J]. Muscle and Nerve, 1983, 6(8): 588-595. DOI:10.1002/mus.880060809
[19]
WELCH A A, HAYHOE R P G, CAMERON D. The relationships between sarcopenic skeletal muscle loss during ageing and macronutrient metabolism, obesity and onset of diabetes[J]. Proceedings of the Nutrition Society, 2020, 79(1): 158-169. DOI:10.1017/S0029665119001150
[20]
BOUCHI R, FUKUDA T, TAKEUCHI T, et al. Insulin treatment attenuates decline of muscle mass in Japanese patients with type 2 diabetes[J]. Calcified Tissue International, 2017, 101(1): 1-8. DOI:10.1007/s00223-017-0251-x
[21]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志, 2018, 10(1): 4-67.
Chinese Diabetes Society. Guidelines for the prevention and control of type 2 diabetes in China (2017 edition)[J]. Chinese Journal of Diabetes, 2018, 10(1): 4-67. DOI:10.3760/cma.j.issn.1674-5809.2018.01.003
[22]
SCOTT D, DE COURTEN B, EBELING P R. Sarcopenia:a potential cause and consequence of type 2 diabetes in Australia's ageing population?[J]. The Medical Journal of Australia, 2017, 207(2): 89.
[23]
SUGIMOTO K, TABARA Y, IKEGAMI H, et al. Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass:the multicenter study for clarifying evidence for sarcopenia in patients with diabetes mellitus[J]. Journal of Diabetes Investigation, 2019, 10(6): 1471-1479. DOI:10.1111/jdi.13070
[24]
钟文, 谢春光, 高泓, 等. 糖尿病与肌少症关系研究新进展[J]. 中国糖尿病杂志, 2017, 25(7): 662-665.
ZHONG W, XIE C G, GAO H, et al. Recent progress of relationship between diabetes and sarcopenia[J]. Chinese Journal of Diabetes, 2017, 25(7): 662-665. DOI:10.3969/j.issn.1006-6187.2017.07.019
[25]
ABBATECOLA A M, FERRUCCI L, CEDA G, et al. Insulin resistance and muscle strength in older persons[J]. Journal of Gerontology Series A-Biological Sciences and Medical Sciences, 2005, 60(10): 1278-1282. DOI:10.1093/gerona/60.10.1278
[26]
吴佳佳, 王炜, 祝捷, 等. 2型糖尿病患者肌少症的相关因素[J]. 中华骨质疏松和骨矿盐疾病杂志, 2016, 9(2): 129-135.
WU J J, WANG W, ZHU J, et al. Relative factors to sarcopenia in T2DM patients[J]. Chinese Journal of Osteoporosis and Bone Mineral Research, 2016, 9(2): 129-135. DOI:10.3969/j.issn.1674-2591.2016.02.005
[27]
MONACO C M F, PERRY C G R, HAWKE T J. Diabetic myopathy:current molecular understanding of this novel neuromuscular disorder[J]. Current Opinion in Neurology, 2017, 30(5): 545-552. DOI:10.1097/WCO.0000000000000479
[28]
KRAUSE M P, RIDDELL M C, HAWKE T J. Effects of type 1 diabetes mellitus on skeletal muscle:clinical observations and physiological mechanisms[J]. Pediatric Diabetes, 2011, 12(4 Pt 1): 345-364.
[29]
D'SOUZA D M, ZHOU S, REBALKA I A, et al. Decreased satellite cell number and function in humans and mice with type 1 diabetes is the result of altered notch signaling[J]. Diabetes, 2016, 65(10): 3053-3061. DOI:10.2337/db15-1577
[30]
JAKOBSEN J, RESKE-NIELSEN E. Diffuse muscle fiber atrophy in newly diagnosed diabetes[J]. Clinical Neurophysiology, 1986, 5(2): 73-77.
[31]
BECHTOLD S, DIRLENBACH I, RAILE K, et al. Early manifestation of type 1 diabetes in children is a risk factor for changed bone geometry:data using peripheral quantitative computed tomography[J]. Pediatrics, 2006, 118(3): e627-e634. DOI:10.1542/peds.2005-2193
[32]
MONACO C M F, HUGHES M C, RAMOS S V, et al. Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes[J]. Diabetologia, 2018, 61(6): 1411-1423. DOI:10.1007/s00125-018-4602-6
[33]
KOO B K, ROH E, YANG Y S, et al. Difference between old and young adults in contribution of β-cell function and sarcopenia in developing diabetes mellitus[J]. Journal of Diabetes Investigation, 2016, 7(2): 233-240. DOI:10.1111/jdi.12392
[34]
MESINOVIC J, ZENGIN A, DE COURTEN B, et al. Sarcopenia and type 2 diabetes mellitus:a bidirectional relationship[J]. Diabetes, Metabolic Syndrome and Obesity, 2019(12): 1057-1072.
[35]
TOURNADRE A, VIAL G, CAPEL F, et al. Sarcopenia[J]. Joint Bone Spine, 2019, 86(3): 309-314. DOI:10.1016/j.jbspin.2018.08.001
[36]
FURRER R, HANDSCHIN C. Muscle wasting diseases:Novel targets and treatments[J]. Annual review of pharmacology and toxicology, 2019(59): 315-339.
[37]
UMEGAKI H. Sarcopenia and diabetes:hyperglycemia is a risk factor for age-associated muscle mass and functional reduction[J]. Journal of Diabetes Investigation, 2015, 6(6): 623-624. DOI:10.1111/jdi.12365
[38]
ZHENG B, OHKAWA S, LI H Y, et al. FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy[J]. FASEB Journal, 2010, 24(8): 2660-2668. DOI:10.1096/fj.09-151480
[39]
TAN K T, ANG S J, TSAI S Y. Sarcopenia:Tilting the balance of protein homeostasis[J]. Proteomics, 2020, 20(5-6): e1800411. DOI:10.1002/pmic.201800411
[40]
赵承奇, 尚军, 邢鲁艳. 糖尿病治疗药物研究进展[J]. 人民军医, 2019, 62(8): 768-773.
ZHAO C Q, SHANG J, XING L Y. Research progress of diabetes treatment drugs[J]. People's Military Surgeon, 2019, 62(8): 768-773.
[41]
张雨丹, 刘仕群, 范存霞, 等. 胰高血糖素样肽1受体激动剂对2型糖尿病合并超重/肥胖患者不同部位脂肪分布及肌肉含量的影响[J]. 南方医科大学学报, 2019, 39(4): 450-455.
ZHANG Y D, LIU S Q, FAN C X, et al. Effect of glucagon-like peptide 1 receptor agonists on body fat redistribution and muscle mass in overweight and obese type 2 diabetic patients[J]. Journal of Southern Medical University, 2019, 39(4): 450-455.
[42]
MELE A, CALZOLARO S, CANNONE G, et al. Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinides-induced atrophy in skeletal muscle[J]. Pharmacology Research & Perspectives, 2014, 2(1): e00028.
[43]
SNIJDERS T, PARISE G. Role of muscle stem cells in sarcopenia[J]. Current Opinion in Clinical Nutrition & Metabolic Care, 2017, 20(3): 186-190.
[44]
WEAVER C M. Diet, gut microbiome, and bone health[J]. Current Osteoporosis Reports, 2015, 13(2): 125-130. DOI:10.1007/s11914-015-0257-0
[45]
DODD K M, TEE A R. Leucine and mTORC1:a complex relationship[J]. American Journal of Physiology-Endocrinology and Metabolism, 2012, 302(11): e1329-1342. DOI:10.1152/ajpendo.00525.2011
[46]
FLORES-GUERRERO J L, OSTE M C J, KIENEKER L M, et al. Plasma branched-Chain amino acids and risk of incident type 2 diabetes:results from the PREVEND prospective cohort study[J]. Journal of Clinical Medicine, 2018, 7(12): 513. DOI:10.3390/jcm7120513
[47]
毛智慧, 刘晓亭, 孙晓婷, 等. 刘晓亭运用"脾主肌肉四肢"理论治疗老年肌肉衰减综合征思路浅析[J]. 辽宁中医杂志, 2017, 44(7): 1407-1409.
MAO Z H, LIU X T, SUN X T, et al. LIU Xiaoting using theory of "spleen dominating muscle limbs" for treatment of elderly sarcopenia[J]. Liaoning Journal of Traditional Chinese Medicine, 2017, 44(7): 1407-1409.
[48]
石晓琳.从脾主运化论治脾瘅[D].沈阳: 辽宁中医药大学, 2012.
SHI X L. Using theory of "spleen governing transportation and transformation" for treatment of pidan[D]. Shenyang: Liaoning University of Traditional Chinese Medicine, 2012.
[49]
王新陆. 论血浊与治未病[J]. 天津中医药, 2008, 25(3): 177-180.
WANG X L. On blood turbidity and preventive treatment of disease[J]. Tianjin Journal of Traditional Chinese Medicine, 2008, 25(3): 177-180.
[50]
郑玉娇, 苟筱雯, 逄冰, 等. "糖络病"学说及其诊疗要点发微[J]. 中医杂志, 2019, 60(22): 1920-1923.
ZHENG Y J, GOU X W, PANG B, et al. A new interpretation of "blood glucose collateral disease" and its diagnosis and treatment points[J]. Journal of Traditional Chinese Medicine, 2019, 60(22): 1920-1923.
[51]
钟文, 谢春光, 高鸿, 等. 基于"脾主肌肉"从脾论治消渴及糖尿病性肌萎缩的相关性探讨[J]. 新中医, 2017, 49(1): 196-199.
ZHONG W, XIE C G, GAO H, et al. Discussion on the correlation of treating diabetes mellitus and diabetic muscle atrophy from spleen based on "spleen dominating muscle"[J]. Journal of New Chinese Medicine, 2017, 49(1): 196-199.
[52]
朱海燕, 高泓, 郭保根, 等. 参芪复方对2型糖尿病大血管病变小鼠糖脂代谢及骨骼肌病变的影响[J]. 中国实验方剂学杂志, 2015, 21(4): 124-128.
ZHU H Y, GAO H, GUO B G, et al. Effect of Shenqi Compound Recipe on metabolism of glucose and lipid, pathological changes of skeletal muscle in mice with type 2 diabetic macroangiopathy[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2015, 21(4): 124-128.
[53]
李魏, 刘晓亭. 药膳干预对衰老大鼠骨骼肌抗氧化能力的影响[J]. 中国老年学杂志, 2018, 38(16): 3985-3987.
LI W, LIU X T. Effect of medicated diet intervention on antioxidant capacity of skeletal muscle in aging rats[J]. Chinese Journal of Gerontology, 2018, 38(16): 3985-3987. DOI:10.3969/j.issn.1005-9202.2018.16.057
[54]
刘亚楠. 衡先培教授辨治肌少症经验[J]. 福建中医药, 2016, 47(4): 53-54.
LIU Y N. Professor HENG Xianpei's experience in treating sarcopenia[J]. Fujian Journal of Traditional Chinese Medicine, 2016, 47(4): 53-54.
[55]
宋清扬, 王小星, 牛秀茹, 等. 自拟健脾益肾方治疗老年骨骼肌减少症脾肾两虚、寒湿内蕴证临床研究[J]. 国际中医中药杂志, 2020, 42(8): 733-736.
SONG Q Y, WANG X X, NIU X R, et al. Clinical study on self-made Jianpi Yishen Recipe in treating deficiency of spleen and kidney and internal syndrome of cold and dampness in elderly skeletal muscle decrease[J]. International Journal of Traditional Chinese Medicine, 2020, 42(8): 733-736. DOI:10.3760/cma.j.cn115398-20191009-00033
[56]
刘碧原, 王景信, 毛璐熙, 等. 痿三针联合康复训练治疗肌少症临床观察[J]. 光明中医, 2020, 35(1): 70-72.
LIU B Y, WANG J X, MAO L X, et al. Analysis on the therapeutic effect of wei three-needle combined with rehabilitation training on myopathy[J]. Guangming Journal of Chinese Medicine, 2020, 35(1): 70-72.
[57]
原淳淳, 艾尔扎提·艾尔宝, 王达宝, 等. 去卵巢大鼠全身肌肉、脂肪和雌二醇含量与骨密度的相关性及补肾健脾穴位针刺的调节作用[J]. 中华中医药杂志, 2020, 35(1): 434-436.
YUAN C C, AIERZHATI A E B, WANG D B, et al. Correlation between muscle, fat, estradiol levels and bone mineral density and regulation of acupuncture at tonifying kidney and invigorating spleen in ovariectomized rats[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(1): 434-436.
Research progress of integrated traditional Chinese and Western medicine in type 2 diabetic mellitus with sarcopenia
NIU Hongjuan , ZUO Xiangyu , PANG Zongran     
School of Pharmacy in Minzu University of China, Key Laboratory of Ethnic Medicine in Ministry of Education, Beijing 100081, China
Abstract: As a chronic complication of type 2 diabetes mellitus (T2DM), sarcopenia seriously affects the quality of life of the elderly and increases the medical and social burden. At present, there is no unified understanding of the diagnostic criteria of sarcopenia in western medicine, and the specific etiology and pathogenesis are not clear. Meanwhile, there is no targeted treatment yet. Diabetes can stimulate the aging patients to lose more muscle and change the composition of muscle and fat. Blood glucose may cause more serious damage to skeletal muscle than age. As the largest target organ of insulin, skeletal muscle protein metabolism imbalance may be the key pathogenesis of diabetic sarcopenia. Traditional Chinese medicine believes that "spleen dominates muscle", and clinical observation is highly related to the possible mechanism of T2DM sarcopenia, which can be used as theoretical guidance for internal and external treatment of traditional Chinese medicine. By summarizing the research progress of traditional Chinese medicine and western medicine on diabetic sarcopenia, this paper aims to provide new ideas for the explanation of disease mechanism and prevention and control of traditional Chinese medicine.
Key words: type 2 diabetes mellitus    sarcopenia    spleen dominating muscle    protein metabolism