文章信息
- 张海昀, 赵发全, 崔元璐
- ZHANG Haiyun, ZHAO Faquan, CUI Yuanlu
- 药食同源类中药防治帕金森病的研究进展
- Research progress on herbs of medicine food homology for treating Parkinson's disease
- 天津中医药, 2021, 38(12): 1621-1626
- Tianjin Journal of Traditional Chinese Medicine, 2021, 38(12): 1621-1626
- http://dx.doi.org/10.11656/j.issn.1672-1519.2021.12.26
-
文章历史
- 收稿日期: 2021-07-06
帕金森病(PD)是一种常见的中枢神经系统退行性疾病,也称为震颤麻痹,随年龄增长,发病概率逐渐增加[1]。近年来,全球范围内的PD患者的数量呈指数倍增长[2],其中中国的PD患者数量最多。PD的主要病理特征是纹状体中多巴胺的减少,由过量的α-突触核蛋白(α-Syn)组成的嗜酸性路易小体(LB)的形成[3]。但是目前对PD的病因和发病机制了解甚少,被广泛接受的病理机制假说包括线粒体功能障碍[4]、氧化应激[5]和细胞凋亡[6]等。
虽然PD患者的数量逐年增长,但临床治疗药物仍然不能有效逆转PD的进程,并伴有许多毒副作用[7-9]。因此,为了寻找低不良反应的治疗药物,越来越多的研究人员开始关注天然药物。大量研究发现,中药可以有效缓解PD的运动和非运动症状,同时PD患者对这些中药具有良好的耐受性[10]。特别是一些药食同源类中药,被证明是长时间食用后几乎没有不良反应的治疗性食品,可用作日常饮食中的功能性食品[11]。笔者主要总结PD的经典实验模型,分析常见的药食同源类中药治疗PD的黄酮类、萜类、苯丙素类、多酚类化合物成分及其可能的治疗机制,以期为广大研究人员在研制PD治疗药物方面提供参考。
1 PD的实验模型神经毒素模型是最经典的PD模型。1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)和6-羟基多巴胺(6-OHDA)是诱导PD模型最常用的毒素。6-OHDA会在给药后通过快速氧化产生过氧化氢(H2O2)、超氧自由基、醌和羟基自由基[12]。MPTP具有亲脂性,可以很容易地穿透血脑屏障。全身给药后,MPTP最终通过B型单胺氧化酶(MAO-B)代谢为1-甲基-4-苯基吡啶离子(MPP+)。MPP+是一种毒性代谢物,可通过多巴胺转运体被多巴胺能神经元吸收。吸收的MPP+会抑制线粒体电子传递链复合体-I的活性,最终引起氧化应激损伤和ATP生成减少[13]。此外,鱼藤酮、百草枯等农药也是常用的神经毒素,鱼藤酮很容易穿过脑血屏障和细胞膜,长期服用鱼藤酮会导致纹状体多巴胺终端丢失,随后黑质(SN)多巴胺能神经元变性[14]。百草枯是线粒体复合体-I的弱抑制剂,据报道可导致SN中多巴胺能神经元的丢失[15]。此外,脂多糖(LPS)是外周免疫细胞和脑胶质细胞的刺激因子,可以作为神经炎症诱导剂,诱导PD的细胞或动物模型[16]。大量研究常采用人的神经母细胞瘤(SH-SY5Y)细胞或肾上腺嗜铬细胞瘤(PC12)细胞作为PD的体外细胞培养模型来评价治疗药物潜在的神经保护作用。
2 治疗PD的药食同源类中药 2.1 富含黄酮类化合物的药食同源类中药黄酮类化合物是蔬菜和水果的主要成分,在生活中来源广泛。它可以通过保护易感神经元,维持运动控制,进而减少运动并发症,保护黑质纹状体的完整性和功能来防止认知功能的丧失[17-18]。药食同源类中药葛根和甘草中含量丰富的黄酮类化合物葛根素和甘草酸,对PD具有神经保护作用。
2.1.1 葛根葛根的药用部位是Pueraria lobata(Wild.)Ohwi或者Pueraria thomsonii Benth.的干燥根。作为一种可食用性中药,葛根一直是食品行业的重要材料,在民间常被用于煮茶和煲汤。葛根素是从葛根中提取的主要活性成分,具有抗炎[19]、抗氧化[20]的特性。在MPP+诱导的SH-SY5Y细胞PD模型中,葛根素可通过激活磷酸肌醇3-激酶(PI3K)/蛋白激酶B信号通路来减少的Bcl-2相关X蛋白(Bax)和半胱氨酸-天冬氨酸蛋白酶(Caspase-3)依赖性细胞死亡[21]。在MPTP诱导的小鼠PD模型中也观察到葛根素可以通过PI3K/AKT通路发挥作用,减少活性氧(ROS)形成[22]。此外,葛根素还可以逆转6-OHDA导致的大鼠黑质中多巴胺和脑源性神经营养因子(BDNF)的耗竭,同时增加抗氧化酶活性[23]。这些结果表明葛根素可以有效保护SN神经元免受6-OHDA引起的氧化应激损伤,这些有益效果可能与L-精氨酸-NO信号通路的调节有关[24]。葛根素还有助于促进多巴胺分泌细胞的增殖和分化[25]。葛根素的制剂研究也证明,葛根素能显著降低MPTP引起的小鼠神经毒性的行为缺陷和多巴胺耗竭[26]。综上,葛根作为药食同源类中药在治疗PD方面具有巨大的潜力。
2.1.2 甘草甘草是一种天然甜味剂,比蔗糖甜50~170倍,其提取物作为甜味剂、增味剂广泛应用于世界各地的饮料和糖果。它是应用最广泛的草药和食品添加剂之一,具有抗炎、抗病毒、免疫调节、保肝等多种药理作用[27]。从甘草中分离得到的一些黄酮类化合物如甘草酮A、黄烷酮甘草素、查尔酮异甘草素和甘草酸(GA)等具有抗PD活性。甘草酮A可通过抑制小胶质细胞介导的神经炎症来阻止多巴胺能神经元的变性,改善LPS诱导的PD大鼠模型的行为功能障碍[16]。黄烷酮甘草素及其前体异构体查尔酮异甘草素可以消除H2O2诱导的氧化损伤[28]。临床研究表明,口服含有甘草活性成分的糖浆可以改善PD患者的症状[29]。GA预处理可显著减轻PD鱼藤酮模型中多巴胺能神经元的丢失,降低炎症介质的水平,防止谷胱甘肽(GSH)的消耗[30]。此外,自噬抑制剂也可以逆转GA的神经保护作用,说明GA可能通过调节SH-SY5Y细胞的自噬来降低6-OHDA和皮质酮诱导的神经毒性[31]。高通量筛选研究还发现甘草是一种很强的MAO-B抑制剂[32]。黄烷酮甘草素及其前体异构体查尔酮异甘草素可能是主要的MAO抑制剂[28]。
2.2 富含萜类化合物的药食同源类中药萜类化合物是一类类型多样、结构多样、生物活性广泛的天然化合物,其对神经毒性模型的保护作用已被证实[33-34]。目前研究发现,萜类化合物能通过减少细胞凋亡和神经炎症发挥神经保护作用。
2.2.1 黄芪黄芪的药用部位是干燥根,黄芪甲苷(AS-IV)是黄芪的主要活性成分,具有抗氧化、抗凋亡和抗炎等作用。因为预防氧化应激和神经炎症对PD的治疗起着重要作用,所以AS-IV的特性使其成为神经退行性疾病的潜在治疗剂[35]。AS-IV预处理能有效防止MPP+诱导的SH-SY5Y细胞死亡,显著提高细胞的活力,减少细胞内ROS的生成,并降低Caspase-3的活性[36]。此外,AS-IV还能通过激活核因子相关因子2(Nrf2)途径和抑制核因子-κB(NF-κB)/NLR家族蛋白3(NLRP3)炎症信号通路来减轻氧化应激损伤[37],减轻6-OHDA诱导的多巴胺能神经元的丢失[38]。此外,黄芪多糖通过体外抑制PI3K/AKT/雷帕霉素靶蛋白(mTOR)途径增强细胞自噬水平以保护神经细胞[39]。Calycosin是一种从黄芪中分离的异黄酮类植物雌激素,通过抑制Toll样受体(TLR)/NF-κB和丝裂原活化蛋白激酶(MAPK)途径的激活来治疗MPTP诱导的PD[40]。这些结果表明黄芪具有预防或治疗PD的潜力。
2.2.2 人参人参是一种珍贵的草本植物,在东亚常作为一种辅助药物,治疗各种疾病[41],也广泛应用于食品、保健品、化妆品等行业。人参皂苷是人参的主要活性成分,它在PD的体内和体外模型中都具有神经保护作用[42-44]。人参水提取物(包括人参皂苷Rg1、Re和Rb1)能减少MPP+处理的SH-SY5Y细胞中ROS的过量产生,抑制Caspase-3的释放和细胞色素C(Cyt-C)的活化,提高Bcl-2/Bax比率,从而提高细胞的存活率[45]。研究发现,人参皂苷Rg1通过Wnt/β-catenin信号通路发挥神经保护作用,通过雌激素和糖皮质激素受体发挥抗炎作用[46]。人参中的糖脂蛋白[47]对PD也有治疗作用。Gintonin是从人参中提取的一种糖脂蛋白,能减少黑质纹状体多巴胺能神经元的丢失和α-syn的积累,其神经保护作用与Nrf2/血红素氧合酶-1(HO-1)通路的调节有关[48]。人参皂苷Rb1能增加MPTP诱导的PD小鼠前额叶皮质γ-氨基丁酸(GABA)含量,减轻PD小鼠的认知障碍。GABA是哺乳动物大脑中的主要抑制性神经递质,GABA的传递与工作记忆具有关联性,而PD患者左侧基底节GABA水平较低[49]。因此,Rb1有望成为治疗PD的候选药物。此外,人参总蛋白还可以防治线粒体功能障碍和神经退行性病变[50]。这些研究表明,人参对PD治疗具有重要作用。
2.3 富含苯丙素类化合物的药食同源类中药苯丙素是天然存在的一类苯环与3个直链碳连接(C6-C3基团)构成的化合物。苯丙素在天然植物中的来源广泛。在PD的研究中,苯丙素类药物有改善PD动物模型运动迟缓的益处。苯丙素不仅可以降低炎症和氧化应激水平,而且能改善PD的行为异常和病理改变。
2.3.1 当归在亚洲和欧洲,当归通常被用作妇科保健的功能性食品补充剂,还可以被用于多种饮食形式,如汤、粥等菜肴,以及药酒和茶。当归中的阿魏酸是一种天然的植物抗氧化剂,是蔬菜和谷物中含量最丰富的苯丙素类化合物。阿魏酸已被证明在多种疾病模型中具有多种保护作用,包括降血脂[51]、抗氧化[52]和抗抑郁[53]。阿魏酸在鱼藤酮和MPTP诱导的PD动物模型中均具有抗PD的作用。在鱼藤酮诱导的PD大鼠模型中,阿魏酸能保护SN致密部和纹状体神经末梢多巴胺神经元,恢复抗氧化酶活性,减少炎症介质环氧化酶-2(COX-2)、诱导型一氧化氮合酶(iNOS)蛋白和促炎细胞因子的表达[54]。此外,小鼠预给药阿魏酸可减轻MPTP诱导的运动损伤和组织病理学改变[55],恢复6-OHDA导致的动物线粒体动力学损伤[56]。此外,当归氯仿提取物中的正丁基苯肼可减轻6-OHDA诱导的多巴胺能神经元变性,减少α-syn的积累,恢复脂质含量和多巴胺水平,延长寿命[57]。从当归中提取的正丁基苯酞也具有治疗PD的作用[58]。这些结果表明当归作为一种佐剂对PD的治疗具有有利作用。
2.3.2 黑芝麻芝麻的含油量高,是重要的油料作物,其中黑芝麻又是世界上最受欢迎的香料之一。芝麻素是木质素类化合物的一种,在芝麻中含量丰富。芝麻素已被证明具有许多生理功能,如降低胆固醇[59]、抗炎[60]、改善脂质代谢紊乱引起的肾脏损害[61]。在PD治疗领域,芝麻素通过增加酪氨酸羟化酶(TH)活性和基因表达,促进多巴胺生物合成,对长期服用左旋多巴的患者具有治疗作用[62]。此外,芝麻素对MPTP诱导的实验性PD细胞模型也有神经保护作用。芝麻素还可以通过减少MPP+引起的ROS和iNOS的产生,保护PC12细胞免受氧化应激损伤,还可以逆转MPP+导致的TH耗竭[63]。这些研究暗示芝麻素作为一种神经保护分子的重要性及其在预防或治疗神经退行性疾病中的潜力。
2.4 富含多酚类化合物的药食同源类中药多酚类化合物是一类复杂的具有多个酚羟基的次生代谢产物,其广泛存在于植物体的皮、根、叶、果肉中,已经发现有多种酚类化合物具有神经保护作用,如茶多酚、花青素、白藜芦醇、姜黄素等。因此,富含某些多酚类化合物的药食同源类中药可能是治疗PD和其他神经系统疾病的候选药物。
2.4.1 决明子在亚洲,决明子是各种功能性饮料常用的草药成分。白藜芦醇是决明子和其他天然植物中的一种天然酚类物质,能减轻氧化应激损伤,使线粒体功能正常化。据报道,白藜芦醇可以改善6-OHDA诱导的SN内多巴胺能神经元染色质凝聚、线粒体肿胀和空泡化[64],还能通过激活PI3K/蛋白激酶B信号通路改善6-OHDA诱导的细胞凋亡和运动功能障碍,延缓PD症状的进展[65]。在多巴胺能神经细胞(SN4741细胞)中,白藜芦醇能拮抗MPP+诱导Bcl-2/Bax比值下降和Caspase-3表达增加,恢复线粒体功能[66]。近年来发现,白藜芦醇可以显著增加组蛋白去乙酰化酶的表达和AKT的磷酸化,减少鱼藤酮导致的PC12细胞氧化损伤、凋亡,恢复线粒体功能[67]。决明子的乙醇提取物对MPTP诱导的SN和纹状体多巴胺神经元变性也具有保护作用[68]。因此,决明子具有明显的神经保护作用。
2.4.2 姜黄本品为姜科植物姜黄的干燥根茎,姜黄是常用的食品色素和调味品。姜黄素是姜黄的主要活性成分,可直接调节α-syn的聚集[69]。在MPTP诱导的PD小鼠模型中,连续两周的姜黄素给药能显著改善小鼠行为障碍和多巴胺消耗[70]。在电生理实验中,姜黄素能逆转鱼藤酮引起的神经元损伤[71]。在百草枯诱导的SH-SY5Y细胞模型中,姜黄素能增强正常细胞的细胞活力,有效减少敲除Pink1基因的凋亡细胞数量[72],并且姜黄素还具有通过肠-脑轴减轻炎症的功能[73],这些结果说明姜黄具有治疗PD的神经保护潜力。
3 结论和展望笔者系统综述了药食同源类中药在体内外治疗PD的作用机制,发现中药能多靶点、多层次整体性调节PD的病理改变。药食同源类中药可以通过减少氧化应激的产生,改善线粒体能量代谢的异常,降低兴奋性氨基酸的毒性损伤,减少免疫应答异常和炎症反应,抑制黑质纹状体神经元的凋亡及α-syn异常积聚的出现等方面地控制PD病情发展。药食同源类中药作为药物对PD有一定的治疗或辅助治疗作用,同时还是日常饮食中应用广泛的草本植物,具有良好的耐受性和低毒性特征,是否能通过增加他们在日常生活中的摄入,达到一定的PD预防或治疗效果,值得深入探究。目前在PD研究领域,许多具有体外活性的药食同源药物尚未通过人体疾病模型试验得到合理证实,因而药食同源中药在体内治疗PD的作用有待进一步探索。PD的治疗是一个相当重要的任务,药食同源类中药作为一种低毒的天然药物,在开发新型抗PD药物方面具有广阔的研究前景。
[1] |
REEVE A, SIMCOX E, TURNBULL D. Ageing and Parkinson's disease: why is advancing age the biggest risk factor?[J]. Ageing Research Reviews, 2014, 14(3): 19-30. |
[2] |
SRIVASTAV S, FATIMA M, MONDAL A C. Important medicinal herbs in Parkinson's disease pharmacotherapy[J]. Biomedicine & Pharmacotherapy, 2017, 92(8): 856-863. |
[3] |
KALIA L V, LANG A E. Parkinson's disease[J]. Lancet, 2015, 386(9996): 896-912. DOI:10.1016/S0140-6736(14)61393-3 |
[4] |
CAMILLERI A, VASSALLO N. The centrality of mitochondria in the pathogenesis and treatment of Parkinson's disease[J]. CNS Neuroscience & Therapeutics, 2014, 20(7): 591-602. |
[5] |
PUSPITA L, CHUNG S Y, SHIM J W. Oxidative stress and cellular pathologies in Parkinson's disease[J]. Molecular Brain, 2017, 10(1): 53. DOI:10.1186/s13041-017-0340-9 |
[6] |
KIEBURTZ K, RAVINA B. Why hasn't neuroprotection worked in Parkinson's disease?[J]. Nature Clinical Practice Neurology, 2007, 3(5): 240-241. DOI:10.1038/ncpneuro0491 |
[7] |
FIGGE D A, STANDAERT D G. Dysregulation of BET proteins in levodopa-induced dyskinesia[J]. Neurobiology of Disease, 2017, 102(10): 125-132. |
[8] |
LIPSKI J, NISTICO R, BERRETTA N, et al. L-DOPA: A scapegoat for accelerated neurodegeneration in Parkinson's disease?[J]. Progress in Neurobiology, 2011, 94(4): 389-407. DOI:10.1016/j.pneurobio.2011.06.005 |
[9] |
ROBAKIS D, FAHN S. Defining the role of the monoamine oxidase-B inhibitors for Parkinson's disease[J]. Cns Drugs, 2015, 29(6): 433-441. DOI:10.1007/s40263-015-0249-8 |
[10] |
SHAN C S, ZHANG H F, XU Q Q, et al. Herbal Medicine formulas for Parkinson's disease: a systematic review and meta-analysis of randomized double-blind placebo-controlled clinical trials[J]. Frontiers in Aging Neuroscience, 2018, 10(2): 349. |
[11] |
HOU Y, JIANG J G. Origin and concept of medicine food homology and its application in modern functional foods[J]. Food Function, 2013, 4(12): 1727-1741. DOI:10.1039/c3fo60295h |
[12] |
COHEN G, HEIKKILA R E. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents[J]. Journal of Biological Chemistry, 1974, 249(8): 2447-2452. DOI:10.1016/S0021-9258(19)42751-8 |
[13] |
NICKLAS W J, VYAS I, HEIKKILA R E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine[J]. Life Sciences, 1985, 36(26): 2503-2508. DOI:10.1016/0024-3205(85)90146-8 |
[14] |
KIN K, YASUHARA T, KAMEDA M. Animal models for Parkinson's disease research: trends in the 2000s[J]. International Journal of Molecular Sciences, 2019, 20(21): 5402. DOI:10.3390/ijms20215402 |
[15] |
BROOKS A I, CHADWICK C A, GELBARD H A, et al. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss[J]. Brain Research, 1999, 823(1-2): 1-10. DOI:10.1016/S0006-8993(98)01192-5 |
[16] |
HUANG B, LIU J, JU C, et al. Licochalcone a prevents the loss of dopaminergic neurons by inhibiting microglial activation in lipopolysaccharide(LPS)-Induced Parkinson's disease models[J]. International Journal of Molecular Sciences, 2017, 18(10): 2043. DOI:10.3390/ijms18102043 |
[17] |
YOUDIM K A, JOSEPH J A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects[J]. Free Radical Biology & Medicine, 2001, 30(6): 583-594. |
[18] |
VAUZOUR D, VAFEIADOU K, RODRIGUEZ-MATEOS A, et al. The neuroprotective potential of flavonoids: a multiplicity of effects[J]. Genes and Nutrition, 2008, 3(3-4): 115-126. DOI:10.1007/s12263-008-0091-4 |
[19] |
KIM K M, JUNG D H, JANG D S, et al. Puerarin suppresses AGEs-induced inflammation in mouse mesangial cells: A possible pathway through the induction of heme oxygenase-1 expression[J]. Toxicology and Applied Pharmacology, 2010, 244(2): 106-113. DOI:10.1016/j.taap.2009.12.023 |
[20] |
KIM J, KIM C S, SOHN E, et al. Puerarin inhibits the retinal pericyte apoptosis induced by advanced glycation end products in vitro and in vivo by inhibiting NADPH oxidase-related oxidative stress[J]. Free Radical Biology & Medicine, 2012, 53(2): 357-365. |
[21] |
ZHU G Q, WANG X C, WU S B, et al. Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against MPP(+)-induced human neuroblastoma SH-SY5Y cell death[J]. Neurochemistry International, 2012, 60(4): 400-408. DOI:10.1016/j.neuint.2012.01.003 |
[22] |
ZHU G Q, WANG X C, WU S B, et al. Neuroprotective effects of puerarin on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine induced Parkinson's disease model in mice[J]. Phytotherapy Research, 2014, 28(2): 179-186. DOI:10.1002/ptr.4975 |
[23] |
LI R, LIANG T, XU L Y, et al. Puerarin attenuates neuronal degeneration in the substantia nigra of 6-OHDA-lesioned rats through regulating BDNF expression and activating the Nrf2/ARE signaling pathway[J]. Brain Research, 2013, 1523(6): 1-9. |
[24] |
ZHAO J, CHENG Y Y, YANG C B, et al. Botanical drug puerarin attenuates 6-hydroxydopamine (6-OHDA)-induced neurotoxicity via upregulating mitochondrial enzyme arginase-2[J]. Molecular Neurobiology, 2016, 53(4): 2200-2211. DOI:10.1007/s12035-015-9195-1 |
[25] |
LIU S Y, QU X H, JIN G H, et al. Puerarin promoted proliferation and differentiation of dopamine-producing cells in Parkinson's animal models[J]. Biomedicine & Pharmacotherapy, 2018, 106(8): 1236-1242. |
[26] |
CHEN T, LIU W, XIONG S, et al. Nanoparticles mediating the sustained puerarin release facilitate improved brain delivery to treat Parkinson's disease[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45276-45289. |
[27] |
ASL M N, HOSSEINZADEH H. Review of pharmacological effects of Glycyrrhiza sp and its bioactive compounds[J]. Phytotherapy Research, 2008, 22(6): 709-724. DOI:10.1002/ptr.2362 |
[28] |
RAMALINGAM M, KIM H, LEE Y, et al. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from Radix Glycyrrhizae in human health and disease models[J]. Frontiers in Aging Neuroscience, 2018, 10(2): 348. |
[29] |
PETRAMFAR P, HAJARI F, YOUSEFI G, et al. Efficacy of oral administration of licorice as an adjunct therapy on improving the symptoms of patients with Parkinson's disease, a randomized double blinded clinical trial[J]. Journal of Ethnopharmacology, 2020, 247(8): 112226. |
[30] |
OJHA S, JAVED H, AZIMULLAH S, et al. Glycyrrhizic acid attenuates neuroinflammation and oxidative stress in rotenone model of Parkinson's disease[J]. Neurotoxicity Research, 2016, 29(2): 275-287. DOI:10.1007/s12640-015-9579-z |
[31] |
YANG G, LI J, CAI Y, et al. Glycyrrhizic acid alleviates 6-hydroxydopamine and corticosterone-induced neurotoxicity in SH-SY5Y cells through modulating autophagy[J]. Neurochemical Research, 2018, 43(10): 1914-1926. DOI:10.1007/s11064-018-2609-5 |
[32] |
MAZZIO E, DEIAB S, PARK K, et al. High throughput screening to identify natural human monoamine oxidase B inhibitors[J]. Phytotherapy Research, 2013, 27(6): 818-828. DOI:10.1002/ptr.4795 |
[33] |
YAN X, LIU D F, ZHANG X Y, et al. Vanillin protects dopaminergic neurons against inflammation-mediated cell death by inhibiting ERK1/2, P38 and the NF-kappaB signaling pathway[J]. International Journal of Molecular Sciences, 2017, 18(2): 389. DOI:10.3390/ijms18020389 |
[34] |
JAVED H, AZIMULLAH S, ABUL KHAIR S B, et al. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone[J]. BMC Neuroscience, 2016, 17(1): 58. DOI:10.1186/s12868-016-0293-4 |
[35] |
COSTA I M, LIMA FOV, FERNANDES L C B, et al. Astragaloside Ⅳ supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review[J]. Current Neuropharmacology, 2019, 17(7): 648-665. DOI:10.2174/1570159X16666180911123341 |
[36] |
ZHANG Z G, WU L, WANG J L, et al. Astragaloside Ⅳ prevents MPP(+)-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production[J]. Molecular and Cellular Biochemistry, 2012, 364(1-2): 209-216. DOI:10.1007/s11010-011-1219-1 |
[37] |
YANG C, MO Y, XU E, et al. Astragaloside Ⅳ ameliorates motor deficits and dopaminergic neuron degeneration via inhibiting neuroinflammation and oxidative stress in a Parkinson's disease mouse model[J]. International Immunopharmacology, 2019, 75(6): 105651. |
[38] |
CHAN W S, DURAIRAJAN S S, LU J H, et al. Neuroprotective effects of Astragaloside Ⅳ in 6-hydroxydopamine-treated primary nigral cell culture[J]. Neurochemistry International, 2009, 55(6): 414-422. DOI:10.1016/j.neuint.2009.04.012 |
[39] |
TAN Y, YIN L, SUN Z, et al. Astragalus polysaccharide exerts anti-Parkinson via activating the PI3K/AKT/mTOR pathway to increase cellular autophagy level in vitro[J]. International Journal of Biological Macromolecules, 2020, 153(7): 349-356. |
[40] |
YANG J, JIA M M, ZHANG X J, et al. Calycosin attenuates MPTP-induced Parkinson's disease by suppressing the activation of TLR/NF-kappa B and MAPK pathways[J]. Phytotherapy Research, 2019, 33(2): 309-318. DOI:10.1002/ptr.6221 |
[41] |
XIANG Y Z, SHANG H C, GAO X M, et al. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials[J]. Phytotherapy Research, 2008, 22(7): 851-858. DOI:10.1002/ptr.2384 |
[42] |
ARDAH M T, PALEOLOGOU K E, LYU G H, et al. Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils[J]. Neurobiology of Disease, 2015, 74(9): 89-101. |
[43] |
CHEN X C, ZHOU Y C, CHEN Y, et al. Ginsenoside Rg1 reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress[J]. Acta Pharmacologica Sinica, 2005, 26(1): 56-62. DOI:10.1111/j.1745-7254.2005.00019.x |
[44] |
ZHOU T T, ZU G, ZHANG X G, et al. Neuroprotective effects of ginsenoside Rg1 through the Wnt/beta-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease[J]. Neuropharmacology, 2016, 101: 480-489. DOI:10.1016/j.neuropharm.2015.10.024 |
[45] |
HU S Q, HAN R W, MAK S H, et al. Protection against 1-methyl-4-phenylpyridinium ion MPP(+)-induced apoptosis by water extract of ginseng (Panax ginseng CA Meyer) in SH-SY5Y cells[J]. Journal of Ethnopharmacology, 2011, 135(1): 34-42. DOI:10.1016/j.jep.2011.02.017 |
[46] |
GAO X Q, DU Z R, YUAN L J, et al. Ginsenoside Rg1 exerts anti-inflammatory effects via G protein-coupled estrogen receptor in lipopolysaccharide-induced microglia activation[J]. Frontiers in Neuroscience, 2019, 13(1): 1168. |
[47] |
PYO M K, CHOI S H, HWANG S H, et al. Novel Glycolipoproteins from Ginseng[J]. Journal of Ginseng Research, 2011, 35(1): 92-103. DOI:10.5142/jgr.2011.35.1.092 |
[48] |
JO M G, IKRAM M, JO M H, et al. Gintonin Mitigates MPTP-induced loss of nigrostriatal dopaminergic neurons and accumulation of synuclein via the Nrf2/HO-1 pathway[J]. Molecular Neurobiology, 2019, 56(1): 39-55. DOI:10.1007/s12035-018-1020-1 |
[49] |
LIU Y, ZONG X D, HUANG J, et al. Ginsenoside Rb1 regulates prefrontal cortical gabaergic transmission in MPTP-treated mice[J]. Aging-Us, 2019, 11(14): 5008-5034. DOI:10.18632/aging.102095 |
[50] |
LIU M C, YU S T, WANG J W, et al. Ginseng protein protects against mitochondrial dysfunction and neurodegeneration by inducing mitochondrial unfolded protein response in Drosophila melanogaster PINK1 model of Parkinson's disease[J]. Journal of Ethnopharmacology, 2020, 247(1): 112213. |
[51] |
LIU Y M, SHEN J D, XU L P, et al. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress[J]. International Immunopharmacology, 2017, 45(6): 128-134. |
[52] |
GRAF E. Antioxidant potential of ferulic acid[J]. Free Radical Bio- logy and Medicine, 1992, 13(4): 435-448. DOI:10.1016/0891-5849(92)90184-I |
[53] |
BUMRUNGPERT A, LILITCHAN S, TUNTIPOPIPAT S, et al. Fe- rulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: a randomized, double-blind, placebo-controlled clinical trial[J]. Nutrients, 2018, 10(6): 713. DOI:10.3390/nu10060713 |
[54] |
OJHA S, JAVED H, AZIMULLAH S, et al. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson's disease[J]. Drug Design Development and Therapy, 2015, 9(2): 5499-5510. |
[55] |
NAGARAJAN S, CHELLAPPAN D R, CHINNASWAMY P, et al. Ferulic acid pretreatment mitigates MPTP-induced motor impairment and histopathological alterations in C57BL/6 mice[J]. Pharmaceutical Biology, 2015, 53(11): 1591-1601. DOI:10.3109/13880209.2014.993041 |
[56] |
ANIS E, ZAFEER M F, FIRDAUS F, et al. Ferulic acid reinstates mitochondrial dynamics through PGC1 alpha expression modulation in 6-hydroxydopamine lesioned rats[J]. Phytotherapy Research, 2020, 34(1): 214-226. DOI:10.1002/ptr.6523 |
[57] |
FU R H, HARN H J, LIU S P, et al. N-butylidenephthalide protects against dopaminergic neuron degeneration and alpha-synuclein accumulation in Caenorhabditis elegans models of Parkinson's disease[J]. Plos One, 2014, 9(1): e85305. DOI:10.1371/journal.pone.0085305 |
[58] |
CHI K, FU R H, HUANG Y C, et al. Adipose-derived stem cells stimulated with n-butylidenephthalide exhibit therapeutic effects in a mouse model of Parkinson's disease[J]. Cell Transplant, 2018, 27(3): 456-470. DOI:10.1177/0963689718757408 |
[59] |
PENALVO J L, HOPIA A, ADLERCREUTZ H. Effect of sesamin on serum cholesterol and triglycerides levels in LDL receptor-deficient mice[J]. European Journal of Nutrition, 2006, 45(8): 439-444. DOI:10.1007/s00394-006-0617-8 |
[60] |
UTSUNOMIYA T, CHAVALI S R, ZHONG W W, et al. Effects of sesamin-supplemented dietary fat emulsions on the ex vivo production of lipopolysaccharide-induced prostanoids and tumor necrosis factor alpha in rats[J]. American Journal of Clinical Nutrition, 2000, 72(3): 804-808. DOI:10.1093/ajcn/72.3.804 |
[61] |
ZHANG R J, YU Y, DENG J J, et al. Sesamin ameliorates high-fat diet-induced dyslipidemia and kidney injury by reducing oxidative stress[J]. Nutrients, 2016, 8(5): 276. DOI:10.3390/nu8050276 |
[62] |
ZHANG M, LEE H J, PARK K H, et al. Modulatory effects of sesamin on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells[J]. Neuropharmacology, 2012, 62(7): 2219-2226. DOI:10.1016/j.neuropharm.2012.01.012 |
[63] |
LAHAIE-COLLINS V, BOURNIVAL J, PLOUFFE M, et al. Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP(+)-induced oxidative stress[J]. Oxidative Medicine and Cellular Longevity, 2008, 1(1): 54-62. DOI:10.4161/oxim.1.1.6958 |
[64] |
JIN F, WU Q, LU Y F, et al. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats[J]. European Journal of Pharmacology, 2008, 600(1-3): 78-82. DOI:10.1016/j.ejphar.2008.10.005 |
[65] |
HUANG N, ZHANG Y, CHEN M, et al. Resveratrol delays 6-hydroxydopamine-induced apoptosis by activating the PI3K/Akt signaling pathway[J]. Experimental Gerontology, 2019, 124: 110653. DOI:10.1016/j.exger.2019.110653 |
[66] |
ZENG W J, ZHANG W, LU F F, et al. Resveratrol attenuates MPP(+)-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3 beta pathway in SN4741 cells[J]. Neuroscience Letters, 2017, 637(12): 50-56. |
[67] |
WANG H, DONG X G, LIU Z X, et al. Resveratrol suppresses rotenone-induced neurotoxicity through activation of SIRT1/Akt1 signaling pathway[J]. Anatomical Record, 2018, 301(6): 1115-1125. DOI:10.1002/ar.23781 |
[68] |
JU M S, KIM H G, CHOI J G, et al. Cassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson's disease models[J]. Food and Chemical Toxicology, 2010, 48(8-9): 2037-2044. DOI:10.1016/j.fct.2010.05.002 |
[69] |
SINGH P K, KOTIA V, GHOSH D, et al. Curcumin modulates alpha-synuclein aggregation and toxicity[J]. ACS Chemical Neuroscience, 2013, 4(3): 393-407. DOI:10.1021/cn3001203 |
[70] |
ZHANG N S, YAN F, LIANG X L, et al. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson's disease therapy[J]. Theranostics, 2018, 8(8): 2264-2277. DOI:10.7150/thno.23734 |
[71] |
DARBINYAN L V, HAMBARDZUMYAN L E, SIMONYAN K V, et al. Protective effects of curcumin against rotenone-induced rat model of Parkinson's disease: in vivo electrophysiological and behavioral study[J]. Metabolic Brain Disease, 2017, 32(6): 1791-1803. DOI:10.1007/s11011-017-0060-y |
[72] |
VAN DER MERWE C, VAN DYK H C, ENGELBRECHT L, et al. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson's disease from mitochondrial dysfunction and cell death[J]. Metabolic Brain Disease, 2017, 54(4): 2752-2762. |
[73] |
DOU Y N, LUO J Q, WU X, et al. Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis"[J]. Journal of Neuroinflammation, 2018, 15(1): 6. DOI:10.1186/s12974-017-1047-7 |