天津中医药  2022, Vol. 39 Issue (11): 1483-1489

文章信息

赵魁, 徐喆, 夏雪萍, 盛新, 庞晨旭, 边育红
ZHAO Kui, XU Zhe, XIA Xueping, SHENG Xin, PANG Chenxu, BIAN Yuhong
酸枣仁汤通过调控昼夜节律治疗失眠的现代研究进展
Modern research evolvements of Suanzaoren Decoction in treating insomnia by regulating circadian rhythm
天津中医药, 2022, 39(11): 1483-1489
Tianjin Journal of Traditional Chinese Medicine, 2022, 39(11): 1483-1489
http://dx.doi.org/10.11656/j.issn.1672-1519.2022.11.21

文章历史

收稿日期: 2022-07-25
酸枣仁汤通过调控昼夜节律治疗失眠的现代研究进展
赵魁1 , 徐喆1 , 夏雪萍1 , 盛新2 , 庞晨旭1 , 边育红1     
1. 天津中医药大学中西医结合学院, 天津 301617;
2. 天津中医药大学第一附属医院肾病科, 天津 300381
摘要:失眠是一种常见的临床病症,其特征是难以开始或不能维持睡眠,并在清醒时伴有易怒或疲劳等症状。部分西药在一定程度上可以缓解失眠,但存在着较多不良反应,长期使用后甚至会形成对药物的耐受性和依赖性。酸枣仁汤作为治疗失眠的经方,以其显著的临床疗效且无不良反应被诸多医家推崇。昼夜节律与生命活动息息相关,昼夜节律的破坏会导致睡眠、情绪等发生变化。大量的实验研究表明,酸枣仁汤可通过调节哺乳动物的昼夜节律来发挥治疗失眠的作用。文章旨在梳理酸枣仁汤通过调控昼夜节律治疗失眠的相关基础实验文献,介绍酸枣仁汤通过调节相关基因、神经递质及其受体的表达,影响下丘脑视交叉上核的肽能神经元、星形胶质细胞和授时因子,进而调控昼夜节律,从而发挥治疗失眠的作用,以期为进一步探索酸枣仁汤治疗失眠的作用机制提供思路和方向。
关键词酸枣仁汤    昼夜节律    失眠    综述    

睡眠是人体生命活动所必需的一种生理状态,根据人在睡眠时能否产生周期性的快速眼球运动,睡眠分为非快眼动睡眠(NREMs)和快眼动睡眠(REMs)。失眠(ID)是指在适宜的睡眠条件下存在的入睡困难、睡眠维持障碍、早醒以及日间功能障碍等病理现象[1]。中国睡眠研究会公布的最新结果显示,中国成年人失眠率可达38.2%,逾3亿人曾出现睡眠障碍。引发失眠的常见因素包括社会—心理因素、环境因素、生理因素、药物与食物等,但日常生活中各种应激事件被认为是失眠最主要的诱因[2]。虽然苯二氮受体激动剂、褪黑素受体激动剂等药物常被用于治疗失眠,但其存在嗜睡、疲劳、眩晕等不良反应[3]

汉代名医张仲景曾在《金匮要略·血痹虚劳病脉证并治》中写道:“虚劳虚烦不得眠,酸枣仁汤主之。”作为中医治疗失眠的经方,酸枣仁汤主治肝血不足、虚火内扰心神所致的心烦失眠。近年来,诸多学者纷纷利用分子生物学技术从不同的角度探究酸枣仁汤治疗失眠的作用及机制。

昼夜节律系统,是受生物钟基因(BCG)和钟控基因(CCG)驱动的一种生物钟系统。在基因的驱动下,机体的生命活动大致以24 h为周期而产生振荡规律现象[4]。地球上的生命受这种昼夜交替所形成的节律支配,如果这种节律发生紊乱,将会导致失眠、抑郁等病理现象的发生[5]。睡眠—觉醒节律就是一种与睡眠相关的昼夜节律[6]。近年来,基于昼夜节律探讨酸枣仁汤治疗失眠的机制被大家广泛关注。因此,文章归纳整理了酸枣仁汤基于调节昼夜节律治疗失眠的相关文献,以期为进一步探索酸枣仁汤的作用机制提供参考。

1 酸枣仁汤对下丘脑视交叉上核(SCN)中相关基因的调节 1.1 调节SCN内即刻早期基因(IEGs)的表达

下丘脑视交叉上核(SCN)是昼夜节律调节系统的中枢生物钟,能够调控哺乳动物昼夜节律[7]。哺乳动物SCN内即刻早期基因(IEGs)的表达一定程度上能够反映昼夜节律[8]

IEGs主要包括c-fos、c-jun和c-myc等,有学者发现酸枣仁汤能够下调SCN内的c-fos、c-jun及nNos的表达来调控昼夜节律[9-10]。研究显示,大脑内信使分子一氧化氮(NO)蓄积到一定程度可引发睡眠,这提示nNos在昼夜调节中具有重要作用。游秋云等[11]发现酸枣仁汤组c-fos基因表达较老年大鼠睡眠剥夺组明显下降,但较正常对照组表达量高,所以推测酸枣仁汤治疗失眠的作用机制可能是通过下调脑组织c-fos基因表达,进而抑制神经细胞凋亡来保护大脑。

1.2 调节SCN内生物钟基因(BCG)的表达

SCN内生物钟基因的表达具有昼夜节律性,在众多的生物钟基因中,核心生物钟基因主要包括Pers、Clock、Baml1、Crys,生理情况下,生物钟基因Bmal1和Clock结合形成Bmal1/Clock异二聚体后与Per1-3、Cry1-2结合促进上游的E-box区域,最终形成节律性输出的起点及反馈环,启动这些生物钟基因的转录[8]

酸枣仁汤对生物钟基因的调控主要涉及Per1-2、Clock、Bmal1和Cry1,相关研究发现酸枣仁汤治疗后的慢性睡眠剥夺大鼠自主活动时间减少,且与大鼠SCN上生物钟基因Clock、Bmal1、Per1-2表达上调有关[12-13]。此外,薄文集等[14]通过实验验证酸枣仁汤能够上调小鼠SCN中Cry1的表达来改善小鼠失眠状态。因此,酸枣仁汤能够上调SCN中4种核心生物钟基因的表达调控昼夜节律,进而改善失眠。

2 酸枣仁汤对中枢神经递质及其受体的影响 2.1 调节5-羟色胺(5-HT)及其受体的表达

现代解剖证明,中脑中缝核5-HT纤维可上行传到SCN[15]。假如觉醒期中缝背核的5-HT神经元兴奋释放5-HT,随后大脑会合成并储备睡眠因子,进而引起NREMs增加。在失眠症患者中,5-HT及其受体表达异常[16-18]

李家豪、肖迪等[19-20]发现慢性睡眠剥夺模型组大鼠较正常组5-HT含量下降,5-HT1A受体表达降低而5-HT2A受体表达升高,酸枣仁汤处理组5-HT含量上升,5-HT1A受体表达增加,5-HT2A受体表达降低。这提示酸枣仁汤通过调节下丘脑5-HT含量以及其受体的表达进而影响昼夜节律,即酸枣仁汤可能调节中脑中缝核5-HT纤维的投射,进而影响SCN的传入联系改善失眠。

2.2 调节谷氨酸及其受体的表达

谷氨酸(Glu)是脑内重要的兴奋性神经递质,其通过与促代谢型谷氨酸受体(mGluRs)结合调控睡眠-觉醒周期[21]。在生理状况下,谷氨酸可与大鼠脑内mGluR2受体结合,从而导致REMS潜伏期延长,REMS持续时间缩短[22]

NayLor等[23]发现相比于睡眠时期,谷氨酸含量在觉醒时期更高。李家娣等[24]发现酸枣仁汤组Glu含量较失眠模型组明显降低。左文彪等[25]发现酸枣仁汤高、中、低剂量组大鼠大脑皮质中mGluR1、mGluR2表达较失眠模型组降低。除此之外,王慧等[26]发现酸枣仁汤对正常大鼠皮质mGluR1、2、7、环磷酸腺苷(cAMP)及蛋白激酶A(PKA)mRNA的表达并无明显影响,但酸枣仁汤可对失眠模型组所造成的PKA和cAMP mRNA表达量下降,mGluR1、2、7 mRNA表达量增加起到一定的干预作用。这说明酸枣仁汤不仅可影响失眠大鼠大脑脑内Glu的含量,还可抑制大脑皮质mGlu1、mGlu2和mGlu7受体mRNA的表达,进而影响受体后cAMP/PKA信号通路活动。

2.3 调节γ-氨基丁酸及其受体的表达

γ-氨基丁酸(GABA)对哺乳动物中枢神经系统具有抑制作用。腹外侧视前区(VLPO)神经元被激活后,通过产生GABA抑制觉醒中枢上行激活通路引发睡眠,因此GABA对睡眠有重要的调节作用[16, 27]。研究表明,GABA能够调节SCN神经元紧张性[28],而位于星形胶质细胞胞膜上GABA转运体(GATs)可降解GABA调节神经元活动的节律变化[29-30]。当胞膜上的GATs被阻断时,不仅会影响到神经元的紧张性,也会缩短生物节律中转录-翻译反馈环路(TTFL)周期[31]

在GABAA受体中,GABAARα1、GABAARγ2在睡眠调节中发挥重要作用。张如意等[32]发现酸枣仁汤能够上调慢性睡眠剥夺老年失眠大鼠下丘脑GABA及其受体GABAARα1和GABAARγ2的相对表达量。游秋云等[33]则发现酸枣仁汤可能增强GABAB1R表达,激活GABAB1R后cAMP-PKA-CREB信号通路,发挥安神助眠作用。这表明酸枣仁汤调节昼夜节律可能与调节GABA及其受体的含量有关。

3 酸枣仁汤对SCN中肽能神经元的调节

SCN主要由血管活性肠多肽(VIP)、精氨酸血管加压素(AVP)及生长抑素(SOM)样的3类肽能神经元组成[34]。当外界光性或非光性时间信号传入SCN时,SCN在接受刺激信息后激发VIP神经元,随后AVP神经元对来自VIP神经元的信息做出相应反馈,因此,作为SCN主要传出纤维的AVP和VIP神经元纤维的表达水平直接影响着正常睡眠—觉醒功能[35]

研究发现,酸枣仁汤能够上调大脑视交叉上核VIP、AVP的表达改善老年睡眠剥夺大鼠的昼夜节律,发挥改善失眠的效果[36]。王蕾等[37]发现SCN中3种肽能神经元可能存在互相间的调节和制约,但酸枣仁汤能否通过影响生长抑素mRNA的表达,进而调节SCN中VIP、AVP的表达来改善老年大鼠的睡眠则未见报道,这可作为后期研究酸枣仁汤的一个方向。

4 酸枣仁汤对星形胶质细胞的调节

研究发现,星形胶质细胞(Ast)在哺乳动物SCN神经元生物节律的稳定表达中发挥着重要的作用[38]。Ast能调节其胞膜上的γ-氨基丁酸转运体-1(GAT-1)和谷氨酸转运-1(GLT-1)影响GABA和Glu的释放,进而影响睡眠[39]。此外,Ast上的P2X7R也参与睡眠的调节[40]。当睡眠被剥夺后,大鼠中脑和视交叉上核等部位的Ast被激活,P2X7R的表达水平提高,然而大脑皮质中的钙离子(Ca2+)/镁离子(Mg2+)-ATPase活性却明显下降,胞内Ca2+含量增加后促进Ast释放ATP,进而刺激Ast释放白细胞介素-1(IL-1)[39],IL-1又会上调Ast上P2X7R基因的表达,进而影响睡眠[41]。曹敏玲等[39]认为P2X7R主要通过胞外ATP诱导Ast释放细胞因子导致失眠。此外,细胞分化转录因子过氧化物酶体增殖物激活受体-γ(PPAR-γ)及其共激活因子PGC-1α均在能量代谢中发挥着重要作用[42-43]

在酸枣仁汤对该过程干预的基础研究中,曹敏玲等[39]证明酸枣仁汤能够降低P2X7R蛋白表达。史琴等[44]发现失眠的大鼠皮质组织Na+/K+-ATPase和Ca2+/Mg2+-ATPase的活性显著降低,而在酸枣仁汤干预后,大脑皮质ATP酶的活性提升。但酸枣仁汤对正常大脑皮质ATP酶活性影响不明显,提示酸枣仁汤是在ATP酶活性变化后才发挥作用。武静等[45]发现酸枣仁汤能使失眠大鼠前额皮质ATP水平上升,但对正常大鼠并无明显影响。刘鑫等[46]则认为酸枣仁汤能够改善下丘脑ATP供能异常引发的昼夜节律紊乱,可能与调节PPARγ及PGC-1α有关。

在日夜交替中,Ast会实现由星形到原生质形的改变,这也使得夜间Ast的突触能够覆盖更大的范围,同时这种变化也会受到胶质纤维酸性蛋白(GFAP)的影响[47]。其中,SCN中Ast在昼夜节律的夜间是活跃的[48],其中的缝隙连接蛋白43(Cx43)表达也具有昼夜节律性[49]。王慧等[50]则发现酸枣仁汤能显著减少失眠大鼠中脑中缝背核神经胶质细胞GFAP的表达,认为酸枣仁汤可以抑制失眠大鼠中脑中缝核Ast的激活,从而降低神经细胞损伤程度。曹敏玲等[51]则证明酸枣仁汤提高神经元生物节律表达的稳定性与降低抑郁大鼠大脑皮质Ast中Cx43的表达相关联。

综上,酸枣仁汤能够调节星形胶质细胞GFAP、Cx43、P2X7R的表达影响失眠,其也可能通过调节Ca2+/Mg2+-ATPase的活性、ATP水平来间接地通过Ast影响昼夜节律,进而调节失眠。

5 酸枣仁汤对授时因子的影响

对于人类来说,当生命活动节律与地球昼夜节律(24 h)相一致时,人体才能保持正常生命活动,但外界的一些刺激可能会使得这种生命活动节律前移或后移,把这些刺激因素命名为“授时因子”(“zeitgebers”),常见的授时因子有光照、进食和运动等[52]。其中,关键授时因子——光照,即通过刺激视网膜光感细胞通过下丘脑通路将光信号传送至SCN,再经相关通路,松果体接受这种信号,进而抑制褪黑素释放并促进机体觉醒。反之,松果体就会分泌褪黑素,并与SCN中存在的褪黑素受体结合,从而促进睡眠[53]

王媛等[54]利用小鼠模型探讨酸枣仁汤在光照改变条件下对小鼠睡眠时相的影响,发现在光照期间酸枣仁汤组觉醒总量减少,而非快动眼睡眠和总睡眠时间总量均增加,这表明酸枣仁汤发挥抗失眠作用与延长光照条件下小鼠的睡眠时间有关,这也为临床防治夜间工作人群的入睡功能障碍做出了一些可参考的理论依据。

因此,酸枣仁汤治疗失眠可能与其作用于机体,机体对光照信息敏感程度降低,松果体分泌褪黑素,进而有助睡眠有关。褪黑素受体激动剂在临床上广泛应用于缓解失眠,但近几年安眠药的滥用,使得患者承受着失眠与安眠药不良反应的双重折磨,因此该发现有望指导酸枣仁汤代替褪黑素受体激动剂的滥用。此外,酸枣仁汤对褪黑素的影响也可能成为科研热点之一。

6 小结与展望

逐年攀升的失眠发生率与西药治疗所致的不良反应,极大地推动了中医药治疗失眠研究的发展。酸枣仁汤作为治疗失眠的经方,尤其适用于心肝血虚型失眠。现代研究表明,酸枣仁汤治疗失眠的临床疗效显著是因为中药通过多成分、多路径来发挥作用。在归纳整理前人酸枣仁汤的相关实验研究后发现,酸枣仁汤发挥治疗作用是建立在患者发生睡眠障碍之上,如酸枣仁汤能够显著影响失眠模型mGluR1、2、7,cAMP的表达和Ca2+/Mg2+-ATPase的活性,但是对正常机体的影响不明显,这可能是酸枣仁汤不良反应小的原因所在。现有的研究表明酸枣仁汤可通过调控昼夜节律改善睡眠,这为揭示酸枣仁汤治疗失眠的机制提供了可探索的新思路。在现有酸枣仁汤通过调节昼夜节律改善失眠的研究中,发现其作用机制有:一是调节SCN中肽能神经元、IEGs、BCG的表达;二是通过对中枢神经递质5-HT、Glu、GABA及其受体的调节;三是直接或间接地调节星形胶质细胞;四是调节机体对授时因子光照的敏感程度。酸枣仁汤对失眠的调节机制远非单一基因或通路可以衡量,不同机制之间也存在着相互的联系,例如谷氨酸可以通过介导星形胶质细胞、参与小脑生物钟基因Bmal1的表达调控SCN生物节律[55];谷氨酸调节生物昼夜节律还与SCN环路的GABA能张力增高有关[56];也有研究发现其可能在SCN环路中与VIP产生相互作用、一同发挥同步生物节律的调节功能[57]。因此,酸枣仁汤调节谷氨酸,进而调节光信号的传递、Bmal1基因的表达等调节昼夜节律改善失眠还有待科研工作者验证。

但是,在探究酸枣仁汤治疗失眠的研究中还存在诸多不足,例如:目前大部分研究多为实验动物研究,临床研究较少;实验动物失眠模型主要有多平台水环境睡眠剥夺模型、氯苯丙氨酸(PCPA)睡眠剥夺模型等,不同的模型是否能够得到相同的结论;实验动物模型虽为失眠模型,但其是否符合中医心烦失眠的证候特点也需要进一步去探索。

随着中医药现代化的不断发展,酸枣仁汤治疗失眠的作用机制将会被深入挖掘,未来可能成为代替西药治疗失眠的首选方案,并为人类健康做出更大贡献。

参考文献
[1]
VAN S E. Brain mechanisms of insomnia: new perspectives on causes and consequences[J]. Physiological Reviews, 2021, 101(3): 995-1046. DOI:10.1152/physrev.00046.2019
[2]
陈贵海. 失眠的研究进展[J]. 中国临床医生杂志, 2017, 45(8): 1-6, 125.
CHEN G H. Research progress of insomnia[J]. Chinese Journal for Clinicians, 2017, 45(8): 1-6, 125. DOI:10.3969/j.issn.2095-8552.2017.08.001
[3]
KAY-STACEY M, ATTARIAN H. Advances in the management of chronic insomnia[J]. BMJ (Clinical Research Ed), 2016, 354: i2123.
[4]
邢陈, 宋伦. 昼夜节律产生和维持的调控系统[J]. 军事医学, 2017, 41(8): 698-702.
XING C, SONG L. Regulation system for generation and maintenance of circadian rhythms[J]. Military Medical Sciences, 2017, 41(8): 698-702.
[5]
FOSTER R G. Sleep, circadian rhythms and health[J]. Interface Focus, 2020, 10(3): 20190098. DOI:10.1098/rsfs.2019.0098
[6]
PICKERING L, THORSTENSEN E W, RIEDEL C, et al. Sleep and circadian rhythms[J]. Ugeskrift for Laeger, 2018, 180(36): V05180319.
[7]
REGHUNANDANAN V. Vasopressin in circadian function of SCN[J]. Journal of Biosciences, 2020, 45: 140. DOI:10.1007/s12038-020-00109-3
[8]
TROTT A J, MENET J S. Regulation of circadian clock transcriptional output by CLOCK: BMAL1[J]. PLoS Genetics, 2018, 14(1): e1007156. DOI:10.1371/journal.pgen.1007156
[9]
张如意, 游秋云, 王平, 等. 酸枣仁汤对慢性睡眠剥夺老年失眠大鼠视交叉上核c-fos及nNos表达的影响[J]. 辽宁中医杂志, 2017, 44(10): 2211-2213, 2243.
ZHANG R Y, YOU Q Y, WANG P, et al. Suanzaoren Decoction on suprachiasmatic nucleus c-fos and nNos expressions of chronic sleep deprivation senile insomnia rats[J]. Liaoning Journal of Traditional Chinese Medicine, 2017, 44(10): 2211-2213, 2243. DOI:10.13192/j.issn.1000-1719.2017.10.063
[10]
张林挺, 李裕和. 酸枣仁汤对失眠大鼠大脑c-fos及c-jun含量的影响[J]. 陕西中医, 2009, 30(7): 928-929.
ZHANG L T, LI Y H. Effects of Suanzaoren Decoction on the contents of c-fos and c-jun in the brain of insomnia rats[J]. Shaanxi Journal of Traditional Chinese Medicine, 2009, 30(7): 928-929. DOI:10.3969/j.issn.1000-7369.2009.07.129
[11]
游秋云, 王平, 张舜波, 等. 酸枣仁汤对REM睡眠剥夺老年大鼠脑神经细胞凋亡及c-fos基因表达水平的影响[J]. 世界睡眠医学杂志, 2014, 1(2): 71-74.
YOU Q Y, WANG P, ZHANG S B, et al. Effect of Suanzao-rentang on neuronal apoptosis and c-fos gene expression of aged rats with rapid eye movement sleep deprivation[J]. World Journal of Sleep Medicine, 2014, 1(2): 71-74.
[12]
张付民, 冉仁国, 赵宾宾. 酸枣仁汤对慢性睡眠剥夺大鼠视交叉上核生物钟基因Clock和Bmal1表达的影响[J]. 湖南中医药大学学报, 2019, 39(1): 19-22.
ZHANG F M, RAN R G, ZHAO B B. Effect of Suanzaoren Decoction on expression of circadian genes clock and Bmal1 in the suprachiasmatic nucleus in chronically sleep-deprived rats[J]. Journal of Hunan University of Chinese Medicine, 2019, 39(1): 19-22. DOI:10.3969/j.issn.1674-070X.2019.01.005
[13]
张付民, 李艳兵. 酸枣仁汤对睡眠剥夺大鼠视交叉上核生物钟基因Period1及Period2表达的影响[J]. 安徽医药, 2019, 23(11): 2132-2136.
ZHANG F M, LI Y B. Effect of Suanzaoren Decoction on the expression of circadian clock genes Period 1 and Period 2 in the suprachiasmatic nucleus of rats with sleep deprivation[J]. Anhui Medical and Pharmaceutical Journal, 2019, 23(11): 2132-2136. DOI:10.3969/j.issn.1009-6469.2019.11.004
[14]
薄文集, 龙清华, 王平. 酸枣仁汤对6月龄APP/PS1双转基因痴呆小鼠昼夜节律及视交叉上核节律基因mRNA表达的影响[J]. 中华中医药杂志, 2019, 34(9): 3960-3963.
BO W J, LONG Q H, WANG P. Effects of Suanzaoren Decoction on circadian rhythm and expression of clock gene mRNA in suprachiasmatic nucleus of 6-month-old APP/PS1 double transgenic mice[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2019, 34(9): 3960-3963.
[15]
KISS J, LÉRÁNTH C, HALÁSZ B. Serotoninergic endings on VIP-neurons in the suprachiasmatic nucleus and on ACTH-neurons in the arcuate nucleus of the rat hypothalamus. A combination of high resolution autoradiography and electron microscopic immunocytochemistry[J]. Neuroscience Letters, 1984, 44(2): 119-124. DOI:10.1016/0304-3940(84)90068-5
[16]
GHISLENI G, KAZLAUCKAS V, BOTH F L, et al. Diphenyl diselenide exerts anxiolytic-like effect in Wistar rats: putative roles of GABAA and 5HT receptors[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32(6): 1508-1515. DOI:10.1016/j.pnpbp.2008.05.008
[17]
REN X J, WANG G Y, ZHANG X P, et al. Sedative and hypnotic effects and transcriptome analysis of Polygala tenuifolia in aged insomnia rats[J]. Chinese Journal of Integrative Medicine, 2020, 26(6): 434-441. DOI:10.1007/s11655-020-3087-6
[18]
龙清华. 郁证失眠的理论探讨及三草安神方对抑郁症失眠大鼠的干预作用[D]. 武汉: 湖北中医药大学, 2017.
LONG Q H. Study on the theory of insomnia in stagnation of depression and intervention of Sanshao Anshen Prescription on rats with depression[D]. Wuhan: Hubei University of Chinese Medicine, 2017.
[19]
李家豪, 郭晓玲, 张如意, 等. 酸枣仁汤对慢性睡眠剥夺老年失眠大鼠下丘脑5-HT及其受体表达的影响[J]. 时珍国医国药, 2017, 28(3): 530-532.
LI J H, GUO X L, ZHANG R Y, et al. Effect of Suanzaoren Decoction on the Expression of 5-HT and Its Receptor in Hypothalamus of Aged Insomnia Rats with Chronic Sleep Deprivation[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(3): 530-532.
[20]
肖迪, 刘俊, 赵宾宾. 酸枣仁汤对慢性睡眠剥夺大鼠海马5-HT1AR和5-HT2AR表达的影响[J]. 西部中医药, 2019, 32(5): 12-15.
XIAO D, LIU J, ZHAO B B. Impacts of Suanzaoren Decoction on the expressions of 5-HT1AR and 5-HT2AR in Hippocampus of the rats with chronic sleep deprivation[J]. Western Journal of Traditional Chinese Medicine, 2019, 32(5): 12-15. DOI:10.3969/j.issn.1004-6852.2019.05.004
[21]
SCHNEIDER L. Neurobiology and neuroprotective benefits of sleep[J]. Continuum (Minneapolis, Minn), 2020, 26(4): 848-870.
[22]
NAGANUMA F, BANDARU S S, ABSI G, et al. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release[J]. Brain Structure & Function, 2019, 224(1): 99-110.
[23]
NAYLOR E, AILLON D V, GABBERT S, et al. Simultaneous realtime measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep[J]. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2011, 656(1/2): 106-113.
[24]
李家娣, 范桂红, 吴迪, 等. 酸枣仁汤对虚劳不眠小鼠脑内NO、SOD和Glu含量及学习记忆能力的影响[J]. 中国老年学杂志, 2014, 34(20): 5778-5779.
LI J D, FAN G H, WU D, et al. Effects of Suanzaoren Decoction on the contents of NO, SOD and Glu in the brain and the ability of learning and memory in mice with deficiency and insomnia[J]. Chinese Journal of Gerontology, 2014, 34(20): 5778-5779. DOI:10.3969/j.issn.1005-9202.2014.20.073
[25]
左文彪, 臧印竹, 王慧. 酸枣仁汤对PCPA致失眠大鼠大脑皮质代谢型谷氨酸受体mGluR1、mGluR2的影响[J]. 亚太传统医药, 2018, 14(3): 4-7.
ZUO W B, ZANG Y Z, WANG H. Effect of Suanzaoren Decoction on insomnia rats cerebral cortex in metabotropic glutamate receptor mGluR1, mGluR2[J]. Asia-Pacific Traditional Medicine, 2018, 14(3): 4-7.
[26]
王慧, 藏印竹, 武静, 等. 酸枣仁汤对PCPA失眠大鼠大脑皮质代谢型谷氨酸受体和受体后cAMP、PKA的干预作用[J]. 中国中医基础医学杂志, 2018, 24(1): 34-37, 93.
WANG H, ZANG Y Z, WU J, et al. Effect of Suanzaoren Decoction on cAMP and PKA after metabolic glutamate receptor and receptor in the cerebral cortex of pcpa insomnia rats[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2018, 24(1): 34-37, 93.
[27]
CENTURIÓN D, MEHOTRA S, SÁNCHEZ-LÓPEZ A, et al. Potential vascular alpha1-adrenoceptor blocking properties of an array of 5-HT receptor ligands in the rat[J]. European Journal of Pharmacology, 2006, 535(1/2/3): 234-242.
[28]
PATTON A P, HASTINGS M H. The suprachiasmatic nucleus[J]. Current Biology: CB, 2018, 28(15): R816-R822. DOI:10.1016/j.cub.2018.06.052
[29]
MOLDAVAN M, CRAVETCHI O, WILLIAMS M, et al. Localization and expression of GABA transporters in the suprachiasmatic nucleus[J]. The European Journal of Neuroscience, 2015, 42(12): 3018-3032. DOI:10.1111/ejn.13083
[30]
朱珊珊, 谭珊珊, 曾因明. 鞘内注射马氯酚对神经病理性痛大鼠的镇痛作用及对脊髓GABA转抗体-1的影响[J]. 中国药理学通报, 2011, 27(10): 1443-1447.
ZHU S S, TAN S S, ZENG Y M. Effects of intrathecal injection of GABAB receptor agonist baclofen on hyperalgesia and spinal GAT-1 of neuropathic rats[J]. Chinese Pharmacological Bulletin, 2011, 27(10): 1443-1447. DOI:10.3969/j.issn.1001-1978.2011.10.026
[31]
MOLDAVAN M, CRAVETCHI O, ALLEN C N. GABA transporters regulate tonic and synaptic GABA A receptor-mediated currents in the suprachiasmatic nucleus neurons[J]. Journal of Neurophysiology, 2017, 118(6): 3092-3106. DOI:10.1152/jn.00194.2017
[32]
张如意, 郭晓玲, 李家豪, 等. 酸枣仁汤对慢性睡眠剥夺老年失眠大鼠下丘脑GABA及其受体表达的影响[J]. 辽宁中医杂志, 2018, 45(4): 845-847, 895.
ZHANG R Y, GUO X L, LI J H, et al. Effect of Suanzaoren Decoction on hypothalamus GABA expression and receptors of chronic sleep deprivation senile insomnia rats[J]. Liaoning Journal of Traditional Chinese Medicine, 2018, 45(4): 845-847, 895.
[33]
游秋云, 王平, 张舜波, 等. 酸枣仁汤对GABAB1R介导快动眼睡眠剥夺老年大鼠下丘脑室旁核cAMP-PKA-CREB信号通路的影响[J]. 世界睡眠医学杂志, 2014, 1(3): 129-134.
YOU Q Y, WANG P, ZHANG S B, et al. Effects of Suanzaoren Decoction on cAMP-PKA-CREB signaling pathway in hypothalamic paraventricular nuclear (PVN) mediated by GABAB1R in aged rat with REM sleep deprivation[J]. World Journal of Sleep Medicine, 2014, 1(3): 129-134.
[34]
YILMAZ A, BUIJS F N, KALSBEEK A, et al. Neuropeptide changes in the suprachiasmatic nucleus are associated with the development of hypertension[J]. Chronobiology International, 2019, 36(8): 1072-1087. DOI:10.1080/07420528.2019.1613424
[35]
ANDRADE J P, PEREIRA P A, SILVA S M, et al. Timed hypocaloric food restriction alters the synthesis and expression of vasopressin and vasoactive intestinal peptide in the suprachiasmatic nucleus[J]. Brain Research, 2004, 1022(1/2): 226-233.
[36]
张如意, 游秋云, 丁莉, 等. 酸枣仁汤对老年慢性睡眠剥夺大鼠视交叉上核中血管活性肠肽、精氨酸加压素肽能神经细胞的影响[J]. 辽宁中医杂志, 2017, 44(9): 1987-1990.
ZHANG R Y, YOU Q Y, DING L, et al. Suanzaoren Decoction on suprachiasmatic nucleus VIP and AVP peptide nerve cells of senile rats with chronic sleep deprivation[J]. Liaoning Journal of Traditional Chinese Medicine, 2017, 44(9): 1987-1990.
[37]
王蕾, 欧可群, 操高原, 陈文玉. 大鼠视交叉上核内主要的三种肽能神经元的分布[J]. 华西医科大学学报, 2000, 31(3): 322-324, 369.
WANG L, OU K Q, CAO G Y, et al. Distribution of peptidergic neurons in the rat suprachiasmatic nucleus[J]. Journal of West China University of Medical Sciences, 2000, 31(3): 322-324, 369.
[38]
TSO C F, SIMON T, GREENLAW A C, et al. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior[J]. Current Biology: CB, 2017, 27(7): 1055-1061.
[39]
曹敏玲, 王慧, 史琴, 等. PCPA失眠大鼠大脑皮质星形胶质细胞GFAP和P2X7受体表达的变化及酸枣仁汤的干预作用[J]. 辽宁中医杂志, 2018, 45(11): 2442-2444, 2466.
CAO M L, WANG H, SHI Q, et al. Changes of GFAP and P2X7 receptor expression in cerebral cortex of PCPA insomnia rats and intervention effect of Suanzaoren Decoction[J]. Liaoning Journal of Traditional Chinese Medicine, 2018, 45(11): 2442-2444, 2466.
[40]
METZGER M W, WALSER S M, DEDIC N, et al. Heterozygosity for the mood disorder-associated variant Gln460Arg alters P2X7 receptor function and sleep quality[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2017, 37(48): 11688-11700.
[41]
LI X Q, YU Q, ZHANG Z L, et al. miR-187-3p mimic alleviates ischemia-reperfusion-induced pain hypersensitivity through inhibiting spinal P2X7R and subsequent mature IL-1β release in mice[J]. Brain, Behavior, and Immunity, 2019, 79: 91-101.
[42]
于化新, 马丹, 刘旭东, 等. 下丘脑cAMP/PKA/PhK/GP通路在脾气虚食少腹胀中的作用研究[J]. 中国中医基础医学杂志, 2020, 26(2): 177-180.
YU H X, MA D, LIU X D, et al. Study on the role of hypothalamic cAMP/PKA/PhK/GP pathway in eating less and abdominal distension of spleen-qi deficiency[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2020, 26(2): 177-180.
[43]
BASS J, TAKAHASHI J S. Circadian integration of metabolism and energetics[J]. Science, 2010, 330(6009): 1349-1354.
[44]
史琴, 王慧, 武静, 等. PCPA失眠后大鼠不同时间大脑皮质钠-钾ATP酶和钙-镁ATP酶活性变化及酸枣仁汤的干预作用[J]. 时珍国医国药, 2016, 27(5): 1050-1052.
SHI Q, WANG H, WU J, et al. Changes in the activities of sodiumpotassium ATPase and calcium-magnesium ATPase in the cerebral cortex of rats after PCPA insomnia at different times and the interventional effect of Suanzaoren Decoction[J]. Lishizhen Medicine and Materia Medica Research, 2016, 27(5): 1050-1052.
[45]
武静, 王慧, 史琴, 等. PCPA失眠大鼠不同时间皮质前额叶ATP水平变化及酸枣仁汤的干预作用[J]. 重庆医学, 2017, 46(4): 439-441.
WU J, WANG H, SHI Q, et al. Changes in prefrontal cortex ATP concentration over time after PCPA induced insomnia and the intervention effect of Suanzaoren Decoction[J]. Chongqing Medicine, 2017, 46(4): 439-441.
[46]
刘鑫, 王平, 丁莉, 等. 酸枣仁汤对老年慢性睡眠剥夺模型大鼠核受体PPARγ及其共激活因子PGC-1α表达的影响[J]. 世界科学技术-中医药现代化, 2021, 23(5): 1339-1346.
LIU X, WANG P, DING L, et al. Effect of Suanzaoren Decoction on the expression of PPARγ and PGC-1α in aged rats with chronic sleep deprivation[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2021, 23(5): 1339-1346.
[47]
VERKHRATSKY A, NEDERGAARD M. Physiology of astroglia[J]. Physiological Reviews, 2018, 98(1): 239-389.
[48]
BRANCACCIO M, PATTON A P, CHESHAM J E, et al. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling[J]. Neuron, 2017, 93(6): 1420-1435.
[49]
ALI A A H, STAHR A, INGENWERTH M, et al. Connexin 30 and Connexin 43 show a time-of-day dependent expression in the mouse suprachiasmatic nucleus and modulate rhythmic locomotor activity in the context of chronodisruption[J]. Cell Communication and Signaling: CCS, 2019, 17(1): 61.
[50]
王慧, 罗坤, 武静. 酸枣仁汤对失眠大鼠中脑中缝背核神经胶质细胞的影响[J]. 中国实验方剂学杂志, 2012, 18(21): 235-239.
WANG H, LUO K, WU J. Effect of Suanzaoren Decoction on the Glia cell in the dorsal raphe nuclei of insomnia rats[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2012, 18(21): 235-239.
[51]
曹敏玲, 邱飞, 王慧. 酸枣仁汤对抑郁大鼠大脑皮质星形胶质细胞和缝隙连接蛋白43的影响[J]. 时珍国医国药, 2017, 28(2): 268-271.
CAO M L, QIU F, WANG H. Effect of Suanzaoren Decoction on the expression of GFAP and Cx43 in the cerebral cortex of rats with depression[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(2): 268-271.
[52]
付聪, 于欢, 陈云飞. 昼夜节律系统与成人昼夜节律睡眠觉醒障碍[J]. 生理科学进展, 2019, 50(1): 35-40.
FU C, YU H, CHEN Y F. Circadian rhythm and adult circadian rhythm sleep-wake disorders[J]. Progress in Physiological Sciences, 2019, 50(1): 35-40.
[53]
VASEY C, MCBRIDE J, PENTA K. Circadian rhythm dysregulation and restoration: the role of melatonin[J]. Nutrients, 2021, 13(10): 3480.
[54]
王媛, 江传玮, 王茜, 等. 光照改变下酸枣仁汤对小鼠睡眠时相的影响[J]. 中国中医药现代远程教育, 2020, 18(23): 131-132, 137.
WANG Y, JIANG C W, WANG Q, et al. Effect of Suanzaoren Decoction on sleep phases in mice under the light changes[J]. Chinese Medicine Modern Distance Education of China, 2020, 18(23): 131-132, 137.
[55]
CHI-CASTAÑEDA D, WALISZEWSKI S M, ZEPEDA R C, et al. Glutamate-dependent BMAL1 regulation in cultured bergmann Glia cells[J]. Neurochemical Research, 2015, 40(5): 961-970.
[56]
BARCA-MAYO O, PONS-ESPINAL M, FOLLERT P, et al. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling[J]. Nature Communications, 2017, 8: 14336.
[57]
黄增浩, 丁海丽, 胡毓诗, 等. 生物节律中枢与星形胶质细胞[J]. 神经解剖学杂志, 2020, 36(6): 701-705.
HUANG Z H, DING H L, HU Y S, et al. Biological rhythm center and astrocytes[J]. Chinese Journal of Neuroanatomy, 2020, 36(6): 701-705.
Modern research evolvements of Suanzaoren Decoction in treating insomnia by regulating circadian rhythm
ZHAO Kui1 , XU Zhe1 , XIA Xueping1 , SHENG Xin2 , PANG Chenxu1 , BIAN Yuhong1     
1. College of Integrated Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
2. Department of Nephropathy, First Teaching Hostipal of Tianjin University of Traditional Chinese Medicinee, Tianjin 300381, China
Abstract: Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep and accompanied by symptoms such as irritability or fatigue when awake. Some Western medicine can relieve insomnia to a certain extent, but there are many adverse reactions, and even after long-term use, tolerance and dependence on the drugs may be formed. Suanzaoren Decoction, as a classic prescription for the treatment of insomnia, is highly praised by many physicians for its significant clinical efficacy and no side effects. The circadian rhythm is closely related to vital activities, and the destruction of the circadian rhythm will lead to changes in sleep, mood and so on.A large number of experimental studies indicate that Suanzaoren Decoction plays a role in the treatment of insomnia by regulating the circadian rhythm of mammals. This article aims to sort out the related fundamental experiment literatures of Suanzaoren Decoction in the treatment of insomnia by regulating the circadian rhythm and introduce that Suanzaoren Decoction regulates the expression of related genes, neurotransmitters and the irreceptors, adjusts the peptidergic neuronsin the suprachiasmatic nucleus of the hypothalamus, a strocytes and zeitgebersto regulatehecircadian rhythmfurther and achieve the effect of treating in somniain the end. We hope to provide new ideas and directions for the advanced exploration of the mechanism that Suanzaoren Decoction treats insomnia.
Key words: Suanzaoren Decoction    circadian rhythm    insomnia    review