文章信息
- 郭小静, 刘维, 卡玉秀, 丁久力, 岳青云, 林芳芳, 陈婌娟, 顾庆香
- Guo Xiaojing, LIU Wei, KA Yuxiu, DING Jiuli, YUE Qingyun, LIN Fangfang, CHEN Shujuan, GU Qingxiang
- 白芍总苷治疗干燥综合征的研究进展
- Progress in total glucosides of paeony on sjogren's syndrome
- 天津中医药, 2022, 39(12): 1627-1632
- Tianjin Journal of Traditional Chinese Medicine, 2022, 39(12): 1627-1632
- http://dx.doi.org/10.11656/j.issn.1672-1519.2022.12.21
-
文章历史
- 收稿日期: 2022-07-21
2. 国家中医针灸临床医学研究中心,天津,300381;
3. 天津中医药大学,天津 301617
干燥综合征(SS)是一种由淋巴细胞介导的慢性、系统性自身免疫病,其特征是外分泌腺的损伤,腺体(如唾液腺和泪腺)分泌功能减弱,临床表现以口干、眼干和腮腺肿大为主,腺体外表现有关节痛、皮肤干燥、疲劳等[1]。本病分为原发性干燥综合征pSS)和继发性干燥综合征(sSS),后者继发于其他自身免疫病。SS起病隐匿,发病机制复杂,多发于中年女性,男女患病比例约为1:9[2]。临床治疗本病的目标为缓解症状,常用人工泪液、人工唾液、类固醇皮质激素及环孢素、羟氯喹等免疫抑制剂,但长期使用增加了不良反应的发生率。中药治疗本病具有临床疗效较好,不良反应小、多环节、多层次、多靶点综合作用的优点,多单独或与其他西药联合应用。
白芍是毛茛科植物芍药Paeonia lactiflora Pall的干燥根,味苦、酸,性微寒,功效为敛阴止汗、养血调经、柔肝止痛、平抑肝阳,主治月经不调、崩漏、自汗、盗汗等。白芍总苷(TGP)是从白芍干燥根中提取的化合物,包括芍药苷、芍药内酯苷、羟基芍药苷等。现代药理及临床研究发现,TGP具有抗炎、止痛、调节免疫、保护肠道黏膜等作用[2],治疗SS有一定疗效[3]。本文从TGP治疗SS的相关机制进行综述,以期为相关研究及临床提供更多的理论依据。
1 抗炎炎症贯穿了干燥综合征整个病程,持续的炎症反应破坏腺体导致其分泌功能受损。pSS的发病机制复杂多样,由多种免疫细胞共同参与。pSS主要累及外分泌腺体,主要为T、B淋巴细胞的浸润,还有约10%的巨噬细胞和树突状细胞(DCs)浸润,导致腺泡破坏、导管萎缩,腺体分泌功能减弱[4]。因此控制炎症是保护腺体功能的关键。近些年研究表明,白芍总苷能够通过多种机制抑制T、B细胞过度活化,减轻对腺体的损害从而起到治疗作用。
1.1 抑制TLR4/5信号通路TOLL样受体(TLRs)作为一种模式识别受体(PRR)表达于抗原提呈细胞,可识别微生物病原体或死亡细胞中的特定分子模式并触发炎症反应。不同的TLR与不同的衔接蛋白结合从而激活各种转录因子,其中TLR4与TLR5可激活转录因子如核因子-κB(NF-κB)和激活蛋白-1(AP-1)[5]。在TRL4胞内MyD88依赖途径中[6],TRL4激活后,MyD88先与招募白介素(IL)-1受体相关激酶(IRAKs)形成复合物,在IRAKs被磷酸化后MyD88又与复合物分离,并与TRAF6结合从而激活NF-κB。TRAF6[7-8]不仅可以参与NF-κB的激活,还是激活AP-1的关键接头蛋白。在使用卵清蛋白造模的免疫小鼠中,TGP抑制树突状细胞(DCs)中MyD88和TRAF6的表达水平,从而抑制TLR4/5信号通路[9]。NOD小鼠是研究SS的经典模型鼠,可以自发地在特定器官(如唾液腺和泪腺)发生淋巴细胞浸润,表现出相应器官的功能障碍[9]。与卵清蛋白造模的免疫小鼠类似[10],在TGP的作用下,NOD小鼠颌下腺组织中TLR4、My D88和NF-κB的m RNA和相应蛋白的表达水平明显下调[11]。由此可见,白芍总苷通过抑制TLR4/5信号通路,选择性抑制下游NF-κB、AP-1通路从而发挥抗炎的治疗作用。
1.2 抑制Fas/FasL与PD-1/PD-L1信号通路Fas/FasL(Fas ligand)和程序性细胞死亡蛋白-1(PD-1)/程序性细胞死亡蛋白配体-1(PD-L1)均是诱导细胞凋亡的重要信号通路,表达于活化的T细胞、B细胞和自然杀伤细胞等[12-13]。T辅助细胞1(Th1)和T辅助细胞2(Th2)分别表达FasL和Fas,而Th1细胞可通过Fas/Fas L下调Th2细胞和T辅助细胞0(Th0)细胞从而使Th平衡失调[14-16]。其中Th1细胞分泌γ干扰素(IFN-γ)和IL-17等,Th2分泌IL-4和IL-17等[17]。IFN-γ/IL-4比值与唇腺组织淋巴细胞浸润程度呈正相关[18]。在NOD小鼠中,TGP下调Fas/FasL的表达和IFN-γ/IL-4比值,抑制T细胞和B细胞的异常分化和凋亡从而改善腺体的病理损伤[18];在pSS患者外周血中[19],TGP抑制PD-1/PD-L1的表达,其中包括CD4+T细胞、CD8+T细胞表面的PD-1和CD14+单核细胞、CD19+ B细胞表明的PD-L1。因此,TGP通过抑制以上两个信号通路来调节Th细胞的分化和凋亡,纠正Th平衡失调,避免细胞内累积大量免疫原性物质从而对机体产生进一步损伤。
1.3 对树突状细胞的调节未成熟树突状细胞(imDCs)存在于外周组织,遇到侵袭抗原或危险时迁移到次级淋巴器官的T细胞区,通过PRRs识别病原体相关分子模式和损伤相关分子模式,将抗原加工提呈给T细胞以刺激T细胞分化,在此过程中imDCs被激活为成熟树突状细胞(mDCs)[20]。其中imDCs具有高吞噬活性,而mDCs表达高水平MHC Ⅱ类分子[21]。在imDCs方面[9, 22],TGP抑制imDCs向mDC转化的同时诱导imDCs向调节性DCs分化,后者的过程主要与上调内源性转化生长因子(TGF)-β介导的吲哚胺2,3-双加氧酶表达有关。这些调节性DCs表现出高CD11b/c和低CD80、CD86和CD40的表达水平,增强了抗原捕获的能力。吲哚胺2,3-双加氧酶是一种分解代谢酶,通过抑制T细胞激活和增殖在免疫耐受中发挥关键作用[23]。在mDCs方面[9],TGP呈剂量依赖性抑制MHC Ⅱ类分子的表达从而影响DCs的抗原呈递能力。因此,TGP通过降低DCs的成熟度和诱导调节性DCs分化来控制DCs对T、B细胞的过度激活和增殖。
1.4 对T细胞的调节调节性T细胞(Treg)分泌IL-10和转化生长因子(TGF)-β等细胞因子,表达转录因子叉头样蛋白3(FoxP3)[24]。Th17细胞不仅分泌IL-17A等细胞因子,还表达维甲酸相关孤儿受体γt(RORγt)和信号转导与转录激活因子3(STAT3)这两种转录因子[25]。Th17/Treg之间的动态平衡由RORγt/Foxp3介导,并且Th17/Treg平衡失调与SS的发病密切相关[26]。在pSS患者中,Treg在pSS外周血中的表达较低[27],IL-17在泪液和唾液中浓度较高[28-29]。其中IL-17可介导外分泌腺的炎症,诱导SS样表型及促进淋巴管血管新生[30]。TGP在下调RORγt mRNA表达的同时上调Foxp3 mRNA表达,从而调节Thl7/Treg的免疫平衡[31-32]。如前文所述[9],TGP能够通过抑制RLT4/5信号通路下调DCs和CD4+ T细胞的C-X-C趋化因子配体(CXCL)12和CXCL16的表达水平,从而抑制DC与T细胞的相互作用。
综合上文,TGP对T细胞的调节分为三个方面,一是调节Thl7/Treg平衡,二是抑制DCs对T细胞的过度激活,三是通过抑制Fas/FasL与PD-1/PD-L1信号通路调节Th1/Th2平衡。
1.5 对B细胞的调节B细胞的异常活化是pSS的一个主要特征,而这与B细胞激活因子(BAFF)、IL-17等有关[33-35]。BAFF是肿瘤坏死因子(TNF)超家族的成员,由上皮细胞、DCs、T细胞和B细胞等产生[36],主要维持B细胞的存活和活化[37]。pSS患者的唾液腺和血清中BAFF水平均升高[38-39],表明BAFF的过表达与pSS的发病相关。TGP下调了NOD大鼠的BAFF、TNF-α、IL-17A及其他趋化因子的表达水平[40]。因此,TGP通过抑制PD-1/PD-L1信号通路[19]和BAFF的表达[40]这两个方面来发挥对B细胞的调节作用,从而抑制B细胞的过度活化,控制炎症反应。
2 改善腺体分泌在为期24周的研究[41]中发现TGP能够提高NOD大鼠的唾液流率、干眼和疲劳的视觉模拟评分,其中TGP高剂量对腺体的保护作用最显著。TGP不仅通过多方面控制炎症反应来改善腺体的分泌功能[31, 40, 42],还通过上调水通道蛋白在腺体的表达来改善腺体的组织损伤[43]。水通道蛋白(AQP)是一组控制水在细胞内进出的特异性跨膜蛋白,调节细胞内外水平衡。水通道蛋白5(AQP5)是水选择性通道亚家族,对水分子的通透性具有高度选择性,广泛分布于腺体导管和腺泡细胞顶质膜,刺激腺体分泌[44]。SS患者和NOD小鼠出现口干症状是由于AQP5在腺泡细胞顶质膜上的表达显著减少,基底膜上的表达量增加,从而阻断了水的转运途径[45-46]。TGP通过上调AQP-5及其mRNA的表达来改善NOD小鼠下颌下腺的病理损伤[43]。
3 缓解关节症状pSS患者常出现关节疼痛,白芍总苷联合雷公藤多苷[47]或来氟米特[48]均能取得良好疗效,显著改善关节症状和炎症因子水平如TNF-α、IL-6和C反应蛋白等。TGP主要从抑制成纤维细胞样滑膜细胞(FLS)增殖。提高cAMP水平和降低炎症因子水平这3个方面发挥作用。
G蛋白偶联受体(GPCRs)是一类调节器官生理和病理的膜受体家族,其中G蛋白是GPCRs的关键下游信号分子[49]。G蛋白α亚基又分为4个家族,其中包括Gαs和Gαi[50]。Gαs家族成员可激活腺苷酸环化酶(AC),而Gαi家族成员可抑制AC,两者共同调节细胞内环磷酸腺苷(cAMP)的浓度[51]。在胶原诱导型关节炎(CIA)大鼠滑膜中[51-52],TGP抑制FLS增殖,调节Gαi和Gαs之间的平衡使滑膜细胞的cAMP含量增加。芍药苷[53]还能抑制CIA大鼠滑膜细胞产生前列腺素E,降低血清IL-1和TNF-α水平,从而控制关节炎症,缓解关节症状。
4 缓解肠道症状pSS患者多出现便干、排便困难等临床表现,这与肠道菌群失调和肠道炎症密切相关[54]。大量研究表明[52]肠道菌群紊乱与自身免疫疾病的发生发展有关。pSS患者肠道微生物的多样性较正常人群存在明显差异,主要表现为链球菌属增多和粪杆菌属减少。TGP主要通过调节肠道菌群结构、增加粪便含水率、促进肠动力和促进肠道受损黏膜屏障修复4个方面来改善便秘症状,保护肠道功能[55-57]。具体来说,在调节肠道菌群方面,TGP不仅能够提高双歧杆菌和乳酸杆菌比例、还能降低肠杆菌比例从而增加短链脂肪酸如乙酸和丁酸的含量[55-56]。在促进肠动力方面,TGP降低了抑制性神经递质(氧化氮和一氧化氮合酶在血清中的表达[56]。在保护肠道黏膜屏障方面,TGP上调了肠道紧密连接蛋白的表达的同时,不仅降低肠道屏障通透性,还降低血清IL-1β、TNF-α和核因子(NF)-κB的水平[55-57]。
SS发病机制复杂,目前尚无治愈方法,因此临床治疗主要是通过减缓疾病进展和缓解症状来提高患者的生活质量。目前的常规治疗方法仍需进一步完善。天然药物具有价格低廉、长期使用不良反应发生率较低等优势。近些年TGP联合其他药物治疗SS、银屑病关节炎和类风湿关节炎等自身免疫病均取得良好疗效[2]。TGP主要通过抗炎、改善腺体分泌、缓解关节和肠道症状方面来调节机体免疫功能,达到治疗效果,其中抗炎包括下调TLR4/5、Fas/FasL和PD-1/PD-L1信号通路,对DCs、T细胞和B细胞的调节。TGP作为辅助药物治疗SS,常与其他药物联合使用,可以提高临床疗效,降低毒不良反应,但应注意使用TGP可出现腹泻。值得注意的是,有研究发现芍药苷[58]可以抑制体内CYP1A2,CYP2C11和CYP3A1的活性,可能影响主要依赖于这些途径的药物的代谢。目前白芍总苷治疗干燥综合征的临床数据有限,结论具有一定局限性,还需要大样本临床研究验证其确切疗效,
[1] |
Gary S. Firestein, Ralph C. Budd, Edward D. Harris, Jr., 等. 凯利风湿病学[J]. 北京: 北京大学医学出版社, 2011. FIRESTEIN G S, BUDD R C, HARRIS E D, et al. Kelley's textbook of rheumatology[M]. Beijing: Peking University Medical Press, 2011. |
[2] |
ZHANG L L, WEI W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony[J]. Pharmacology & Therapeutics, 2020, 207(2): 107452. |
[3] |
汪娟, 王芳. 白芍总苷治疗自身免疫性疾病的研究进展[J]. 医学综述, 2021, 27(22): 4481-4485. WANG J, WANG F. Research progress of total glucosides of paeony in treatment of autoimmune diseases[J]. Medical Recapitulate, 2021, 27(22): 4481-4485. DOI:10.3969/j.issn.1006-2084.2021.22.020 |
[4] |
CHRISTODOULOU M I, KAPSOGEORGOU E K, MOUTSOPOULOS H M. Characteristics of the minor salivary gland infiltrates in sjögren's syndrome[J]. Journal of Autoimmunity, 2010, 34(4): 400-407. DOI:10.1016/j.jaut.2009.10.004 |
[5] |
KAWAI T, AKIRA S. TLR signaling[J]. Semin Immunol, 2007, 19(1): 24-32. DOI:10.1016/j.smim.2006.12.004 |
[6] |
吴疑, 匡梅, 周红, 等. TLR4信号通路及其负调控研究进展[J]. 现代医药卫生, 2016, 32(18): 2821-2824. WU Y, KUANG M, ZHOU H, et al. Advances in TLR4 signaling pathway and its negative regulation[J]. Journal of Modern Medicine & Health, 2016, 32(18): 2821-2824. DOI:10.3969/j.issn.1009-5519.2016.18.013 |
[7] |
TAILOR P, TAMURA T, OZATO K. IRF family proteins and type I interferon induction in dendritic cells[J]. Cell Research, 2006, 16(2): 134-140. DOI:10.1038/sj.cr.7310018 |
[8] |
JANSSENS S, BEYAERT R. A universal role for MyD88 in TLR/IL-1R-mediated signaling[J]. Trends in Biochemical Sciences, 2002, 27(9): 474-482. DOI:10.1016/S0968-0004(02)02145-X |
[9] |
ZHOU Z, LIN J P, HUO R F, et al. Total glucosides of paeony attenuated functional maturation of dendritic cells via blocking TLR4/5 signaling in vivo[J]. International Immunopharmacology, 2012, 14(3): 275-282. DOI:10.1016/j.intimp.2012.07.012 |
[10] |
BRALEY-MULLEN H, YU S G. NOD.H-2h4 mice: an important and underutilized animal model of autoimmune thyroiditis and sjogren's syndrome[J]. Advances in Immunology, 2015, 126(1): 1-43. |
[11] |
梅寒颖, 刘炬, 汤曾耀. 基于TLR4/MyD88/NF-κB信号通路探讨白芍总苷抑制干燥综合征模型小鼠炎症的作用机制[J]. 中药新药与临床药理, 2021, 32(9): 1293-1299. MEI H Y, LIU J, TANG Z Y. Mechanism of total glucosides of paeony inhibiting inflammation in sjogren's syndrome model mice based on TLR4/MyD88/NF-κB signaling pathway[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2021, 32(9): 1293-1299. DOI:10.19378/j.issn.1003-9783.2021.09.009 |
[12] |
施雁庭, 黎皓, 郑捷, 等. 程序性细胞死亡蛋白1及其配体通路在特发性炎症性肌病中的研究进展[J]. 中华皮肤科杂志, 2022, 55(7): 633-636. SHI Y T, LI H, ZHENG J, et al. Programmed death-1/programmed death ligand-1 signaling pathway in idiopathic inflammatory myopathies[J]. Chinese Journal of Dermatology, 2022, 55(7): 633-636. |
[13] |
YAMADA A, ARAKAKI R, SAITO M, et al. Dual role of fas/FasL-mediated signal in peripheral immune tolerance[J]. Frontiers in Immunology, 2017, 121(8): 403. |
[14] |
JU S T, MATSUI K, OZDEMIRLI M. Molecular and cellular mechanisms regulating T and B cell apoptosis through Fas/FasL interaction[J]. Int Rev Immunol, 1999, 18(5-6): 485-513. DOI:10.3109/08830189909088495 |
[15] |
WILLIAMS J W, FERREIRA C M, BLAINE K M, et al. Non-apoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation[J]. Front Immunol, 2018, 32(9): 2521. |
[16] |
SUDZIUS G, MIELIAUSKAITE D, BUTRIMIENE I, et al. Activity of T-helper cells in patients with primary sjogren's syndrome[J]. In Vivo (Athens, Greece), 2013, 27(2): 263-268. |
[17] |
FIRESTEIN G S. Novel therapeutic strategies involving animals, arthritis, and apoptosis[J]. Current Opinion in Rheumatology, 1998, 10(3): 236-241. DOI:10.1097/00002281-199805000-00012 |
[18] |
周强, 柏涛, 吴鸿雁. 干燥综合征患者唇腺黏膜淋巴细胞Th1/Th2和Fas/FasL表达的相关性研究[J]. 徐州医学院学报, 2008, 28(1): 28-30. ZHOU Q, BAI T, WU H Y. Expression of Th1/Th2 and Fas/FasL in the labial salivary gland of patients with sjogren's syndrome and its significance[J]. Acta Academiae Medicinae Xuzhou, 2008, 28(1): 28-30. DOI:10.3969/j.issn.1000-2065.2008.01.011 |
[19] |
CHEN Y Y, WANG Y, XU L, et al. Influence of total glucosides of paeony on PD-1/PD-L1 expression in primary sjögren's syndrome[J]. International Journal of Rheumatic Diseases, 2019, 22(2): 200-206. DOI:10.1111/1756-185X.13391 |
[20] |
LIU K, NUSSENZWEIG M C. Origin and development of dendritic cells[J]. Immunological Reviews, 2010, 234(1): 45-54. DOI:10.1111/j.0105-2896.2009.00879.x |
[21] |
GEISSMANN F, MANZ M G, JUNG S, et al. Development of monocytes, macrophages, and dendritic cells[J]. Science, 2010, 327(5966): 656-661. DOI:10.1126/science.1178331 |
[22] |
CHEN D, LI Y X, WANG X D, et al. Generation of regulatory dendritic cells after treatment with paeoniflorin[J]. Immunologic Research, 2016, 64(4): 988-1000. DOI:10.1007/s12026-015-8773-7 |
[23] |
KATZ J B, MULLER A J, PRENDERGAST G C. Indoleamine 2, 3-dioxygenase in T-cell tolerance and tumoral immune escape[J]. Immunological Reviews, 2008, 222(1): 206-221. DOI:10.1111/j.1600-065X.2008.00610.x |
[24] |
林瀚青, 陶磊, 路丽明. CD4+调节性T细胞: 功能异质性、分群与疾病[J]. 现代免疫学, 2022, 42(2): 89-96. LIN H Q, TAO L, LU L M. CD4+ regulatory T cell: functional heterogeneity, subsets and relevant diseases[J]. Current Immunology, 2022, 42(2): 89-96. |
[25] |
GHORESCHI K, LAURENCE A, YANG X P, et al. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease[J]. Trends in Immunology, 2011, 32(9): 395-401. DOI:10.1016/j.it.2011.06.007 |
[26] |
朱建东, 王忠泉, 张品南. 干燥综合征患者Th17与调节性T细胞免疫失衡的观察[J]. 放射免疫学杂志, 2012, 25(3): 301-303. ZHU J D, WANG Z Q, ZHANG P N. The imbalance of immunity between Th17 and CD4+ CD25+ regulatory T cell in patients with sjögren's syndrome[J]. Journal of Radioimmunology, 2012, 25(3): 301-303. DOI:10.3969/j.issn.1008-9810.2012.03.034 |
[27] |
高丽霞, 张奉春, 马毓梅, 等. 调节性T细胞在原发性干燥综合征中的异常表达[J]. 中华风湿病学杂志, 2012, 16(7): 477-480, 505. GAO L X, ZHANG F C, MA Y M, et al. Abnormal expression of T regulatory cells in primary sjögren's syndrome[J]. Chinese Journal of Rheumatology, 2012, 16(7): 477-480, 505. DOI:10.3760/cma.j.issn.1007-7480.2012.07.010 |
[28] |
OHYAMA K, MORIYAMA M, HAYASHIDA J N, et al. Saliva as a potential tool for diagnosis of dry mouth including sjögren's syndrome[J]. Oral Diseases, 2015, 21(2): 224-231. DOI:10.1111/odi.12252 |
[29] |
LEE S Y, HAN S J, NAM S M, et al. Analysis of tear cytokines and clinical correlations in sjögren syndrome dry eye patients and non-sjögren syndrome dry eye patients[J]. American Journal of Ophthalmology, 2013, 156(2): 247-253. DOI:10.1016/j.ajo.2013.04.003 |
[30] |
彭秋伟, 姜泉, 张华东, 等. IL-17在干燥综合征发病机制中作用研究进展[J]. 世界中西医结合杂志, 2019, 14(1): 133-137. PENG Q W, JIANG Q, ZHANG H D, et al. Research progress on the effect of IL-17 in the pathogenesis of sjogren's syndrome[J]. World Journal of Integrated Traditional and Western Medicine, 2019, 14(1): 133-137. DOI:10.13935/j.cnki.sjzx.190134 |
[31] |
吴国琳, 王庆, 卢雯雯, 等. 基于对NOD小鼠颌下腺RORγt、Foxp3及其mRNA调节探讨白芍总苷治疗干燥综合征的作用机制[J]. 天然产物研究与开发, 2021, 33(3): 462-467. WU G L, WANG Q, LU W W, et al. Investigation on the mechanism of total glucosides of paeony on the treatment of sjogren's syndrome based on the regulation of RORγt, Foxp3 and their mRNA in submandibular glands of NOD mice[J]. Natural Product Research and Development, 2021, 33(3): 462-467. |
[32] |
童芳, 刘辉, 董群, 等. 白芍总苷对EAT小鼠Treg/Th17免疫平衡的影响[J]. 基础医学与临床, 2019, 39(8): 1157-1162. TONG F, LIU H, DONG Q, et al. Effect of total glucosides of paeonia on Treg/Th17 immune balance in EAT mice[J]. Basic & Clinical Medicine, 2019, 39(8): 1157-1162. DOI:10.3969/j.issn.1001-6325.2019.08.016 |
[33] |
GREEN N M, MARSHAK-ROTHSTEIN A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity[J]. Seminars in Immunology, 2011, 23(2): 106-112. DOI:10.1016/j.smim.2011.01.016 |
[34] |
高雅静, 王慧, 王永福. B细胞在原发性干燥综合征发病机制及治疗中的研究进展[J]. 实用临床医药杂志, 2021, 25(14): 108-112. GAO Y J, WANG H, WANG Y F. Research progress of B cells in pathogenesis and treatment of primary sjögren's syndrome[J]. Journal of Clinical Medicine in Practice, 2021, 25(14): 108-112. DOI:10.7619/jcmp.20211343 |
[35] |
侯佳奇, 薛鸾. 原发性干燥综合征发病机制概述[J]. 现代免疫学, 2019, 39(1): 58-63. HOU J Q, XUE L. Overview of pathogenesis of primary sjögren's syndrome[J]. Current Immunology, 2019, 39(1): 58-63. |
[36] |
DARIDON C, DEVAUCHELLE V, HUTIN P, et al. Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary sjögren's syndrome[J]. Arthritis & Rheumatism, 2007, 56(4): 1134-1144. |
[37] |
张颖, 付妤. B细胞激活因子在慢性炎症性疾病中研究进展[J]. 医学研究杂志, 2021, 50(12): 145-148. ZHANG Y, FU Y. Research progress of B cell activator in chronic inflammatory diseases[J]. Journal of Medical Research, 2021, 50(12): 145-148. |
[38] |
LAVIE F, MICELI-RICHARD C, QUILLARD J, et al. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with sjögren's syndrome[J]. The Journal of Pathology, 2004, 202(4): 496-502. DOI:10.1002/path.1533 |
[39] |
VARIN M M, LE POTTIER L, YOUINOU P, et al. B-cell tolerance breakdown in sjögren's syndrome: focus on BAFF[J]. Autoimmunity Reviews, 2010, 9(9): 604-608. DOI:10.1016/j.autrev.2010.05.006 |
[40] |
LI B B, LIU G, LIU R, et al. Total glucosides of paeony (TGP) alleviates sjogren's syndrome through inhibiting inflammatory responses in mice[J]. Phytomedicine, 2020, 71(7): 153203. |
[41] |
LIU X, LI X M, LI X P, et al. The efficacy and safety of total glucosides of peony in the treatment of primary sjögren's syndrome: a multi-center, randomized, double-blinded, placebo-controlled clinical trial[J]. Clinical Rheumatology, 2019, 38(3): 657-664. DOI:10.1007/s10067-018-4315-8 |
[42] |
WU G L, WU N Y, LI T Y, et al. Total glucosides of peony ameliorates sjögren's syndrome by affecting Th1/Th2 cytokine balance[J]. Experimental and Therapeutic Medicine, 2016, 11(3): 1135-1141. DOI:10.3892/etm.2016.3016 |
[43] |
WU G L, PU X H, YU G Y, et al. Effects of total glucosides of peony on AQP-5 and its mRNA expression in submandibular glands of NOD mice with sjogren's syndrome[J]. European Review for Medical and Pharmacological Sciences, 2015, 19(1): 173-178. |
[44] |
MOTEGI K, AZUMA M, TAMATANI T, et al. Expression of aquaporin-5 in and fluid secretion from immortalized human salivary gland ductal cells by treatment with 5-aza-2'-deoxycytidine: a possibility for improvement of xerostomia in patients with sjögren's syndrome[J]. Laboratory Investigation, 2005, 85(3): 342-353. DOI:10.1038/labinvest.3700234 |
[45] |
李晓宇, 韩星海. 干燥综合征与水通道蛋白-5[J]. 中华风湿病学杂志, 2007, 11(6): 378-380. LI X Y, HAN X H. Sjogren's syndrome and aquaporin-5[J]. Chinese Journal of Rheumatology, 2007, 11(6): 378-380. DOI:10.3760/j:issn:1007-7480.2007.06.017 |
[46] |
DELPORTE C, STEINFELD S. Distribution and roles of aquaporins in salivary glands[J]. Biochimica et Biophysica Acta, 2006, 1758(8): 1061-1070. |
[47] |
马丽丽, 周攀, 陈宁, 等. 白芍总苷胶囊联合雷公藤多苷片治疗类风湿性关节炎临床研究[J]. 新中医, 2022, 54(18): 74-78. MA L L, ZHOU P, CHEN N, et al. Clinical study on total glucosides of paeony capsules combined with tripterygium wilfordii glycosides tablets for rheumatoid arthritis[J]. New Chinese Medicine, 2022, 54(18): 74-78. |
[48] |
陈爱党, 康宁, 郭建洲. 白芍总苷胶囊联合来氟米特治疗对类风湿关节炎患者炎性因子、心肌酶谱及不良反应的影响[J]. 实用医院临床杂志, 2022, 19(5): 131-134. CHEN A D, KANG N, GUO J Z. The effects of total glucoside of paeonia lactiflora capsule combined with leflunomide on inflammatory factors, myocardial enzyme spectrum and adverse reactions in patients with rheumatoid arthritis[J]. Practical Journal of Clinical Medicine, 2022, 19(5): 131-134. |
[49] |
DUC N M, KIM H R, CHUNG K Y. Structural mechanism of G protein activation by G protein-coupled receptor[J]. European Journal of Pharmacology, 2015, 763(11): 214-222. |
[50] |
WILKIE T M, GILBERT D J, OLSEN A S, et al. Evolution of the mammalian G protein alpha subunit multigene family[J]. Nature Genetics, 1992, 1(2): 85-91. |
[51] |
JIA X Y, CHANG Y, SUN X J, et al. Total glucosides of paeony inhibit the proliferation of fibroblast-like synoviocytes through the regulation of G proteins in rats with collagen-induced arthritis[J]. International Immunopharmacology, 2014, 18(1): 1-6. |
[52] |
CHEN J Y, WU H X, CHEN Y, et al. Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2[J]. Planta Medica, 2012, 78(7): 665-671. |
[53] |
CHANG Y, ZHANG L, WANG C, et al. Paeoniflorin inhibits function of synoviocytes pretreated by rIL-1α and regulates EP4 receptor expression[J]. Journal of Ethnopharmacology, 2011, 137(3): 1275-1282. |
[54] |
VIVINO F B. Sjogren's syndrome: clinical aspects[J]. Clinical Immunology (Orlando, Fla), 2017, 182: 48-54. |
[55] |
刘兴艳, 马舒伟, 李雄伟, 等. 白芍总苷对干燥综合征小鼠肠道微环境的调节作用[J]. 中国实验方剂学杂志, 2021, 27(13): 50-57. LIU X Y, MA S W, LI X W, et al. Regulatory mechanism of total glucosides of paeony on gut microenvironment in non-obese diabetic mice with sjogren's syndrome[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(13): 50-57. |
[56] |
LU W W, FU T X, WANG Q, et al. The effect of total glucoside of paeony on gut microbiota in NOD mice with sjögren's syndrome based on high-throughput sequencing of 16SrRNA gene[J]. Chinese Medicine, 2020, 15(2): 61. |
[57] |
LIU G, WANG Z Y, LI X, et al. Total glucosides of paeony (TGP) alleviates constipation and intestinal inflammation in mice induced by sjögren's syndrome[J]. Journal of Ethnopharmacology, 2020, 260(12): 113056. |
[58] |
LI S C, LI X T, YUAN D S, et al. Effects of paeoniflorin on the activities and mRNA expression of rat CYP1A2, CYP2C11 and CYP3A1 enzymes in vivo[J]. Xenobiotica, 2021, 51(9): 961-967. |
2. National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China;
3. Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China