文章信息
- 宋治洁, 张文澜, 姜希娟, 等.
- SONG Zhijie, ZHANG Wenlan, JIANG Xijuan, et al.
- 中医药防治急性后新型冠状病毒肺炎综合征血栓形成的研究进展
- Research progress in the prevention and treatment of thrombosis in post-acute COVID-19 syndrome by Chinese medicine
- 天津中医药, 2023, 40(8): 1083-1088
- Tianjin Journal of Traditional Chinese Medicine, 2023, 40(8): 1083-1088
- http://dx.doi.org/10.11656/j.issn.1672-1519.2023.08.22
-
文章历史
- 收稿日期: 2023-03-22
新型冠状病毒感染(COVID-19)是由新型冠状病毒(SARS-CoV-2)感染引起的急性呼吸道传染病[1]。人们普遍易感,具有传染性高、发病率高、病死率高等特点。据报道,全球已有6亿余人受到感染,包括658万份死亡病例。同时,越来越多的报告指出,这一群体在度过COVID-19的急性阶段后,相关后遗症或其他并发症可能会长期存在,从而对患者的身体及精神状况造成明显影响,使患者生活质量严重受损[2]。因此,把COVID-19患者所处的这种亚急性或慢性疾病阶段称为急性后新冠肺炎综合征(PACS)。
PACS通常代表一系列各种异常临床表现的综合征,包括疲劳、头痛、注意力障碍、咳嗽、胸痛和呼吸困难等。在COVID-19患者中,PACS普遍存在,一项对武汉1 733例患者自新发COVID-19后6个月的队列研究表明,76 %的患者至少存在1种症状[3]。来自于西班牙的1项研究则表明,出院6个月后近50%的COVID-19患者存在各个系统和器官的功能障碍或者在原有基础上进一步恶化的情况[4]。据估计,在从COVID-19感染的急性期康复的患者中,PACS流行率超过20%,且随着全球感染病例的持续增多而呈现进一步升高的趋势。值得注意的是,无论是COVID-19急性期,还是PACS[5],患者的静脉血栓栓塞(VTE)风险均明显升高。据报道重症COVID-19患者的VTE总发生率高达69 %,而从长期来看COVID-19患者相关血栓栓塞发生率在5 %左右[6]。因此,应给予PACS血栓形成足够的重视。自COVID-19爆发以来,中国积极采用中西医结合治疗的方案,并取得显著成效。尤其是中医药扶正祛邪的理念,对改善PACS具有独特优势,因此,研究中医药对PACS促康复措施显得尤为重要。该文就PACS致血栓形成的病理生理及中医药干预的机制作综述。
1 PACS炎症反应促血栓形成的机制及中医药干预 1.1 PACS炎症反应促血栓形成的机制COVID-19患者的急性期主要发生免疫失调及炎症过度反应后形成的细胞因子风暴(CS),CS可对患者机体造成不可挽回的破坏。最新研究表明,重症COVID-19患者的循环细胞因子中,白细胞介素2(IL-2)、白细胞介素7(IL-7)、白细胞介素10(IL-10)、粒细胞集落刺激因子(G-CSF)、趋化因子-10(IP-10)、单核细胞趋化蛋白-1(MCP-1)、巨噬细胞炎症蛋白-1A(MIP-1A)和肿瘤坏死因子-α(TNF-α)等水平较高[7]。此外,多项研究显示PACS也存在持续的系统炎症及循环细胞因子过表达的情况[8],如IL-6、TNF-α、C反应蛋白(CRP)、IL-1α、IL-1β及转化生长因子-β(TGF-β)等因子水平均不同程度升高[9]。血管紧张素转换酶2(ACE2)是参与肾素-血管紧张素-醛固醇(RASS)系统的一种酶,在人体的心、肺、肾及脑等部位广泛表达,其作用是催化裂解并将血管紧张素(AngⅡ)转化为七肽血管紧张素1-7,后者与Mas受体结合,可产生调节免疫、抗炎等作用,主要可拮抗AngⅡ的促炎作用。研究发现SARS-CoV-2能够稳定地与ACE2结合,并下调ACE2的表达,这意味ACE2拮抗AngⅡ的能力下降,并有利于AngⅡ1型(AT1)受体表达,从而导致炎症介质如核因子-κB(NF-κB)、IL-6和TNF-α等的激增。而以上这些炎症反应可能与机体对SARS-CoV-2发生的免疫反应有直接关系,如嗜中性粒细胞、Th1细胞以及巨噬细胞[10]等细胞的过度活化有关。特别注意的是,COVID-19患者的炎症水平与凝血严重程度呈正相关[11]。Johnson等[12]研究表明,与有或没有心血管疾病的对照标本进行比较,死于COVID-19的患者心脏中微血栓的发生率是对照组的5倍,这说明在血栓形成过程中,炎症反应被认为是可能的风险因素之一[13]。研究发现多种炎性细胞因子可刺激组织因子(TF)的表达,促进凝血反应发生[14]。如前所述,PACS处于长期的系统炎症状态,即可导致内皮细胞发生炎症损伤,暴露内皮细胞下TF,从而引发外源性的凝血反应,促进血栓形成[15]。此外,CRP作为系统炎症的标志物,可能参与到长期COVID-19患者的血栓形成中。1项对2 782名COVID-19患者的队列研究表明,以108 mg/L为中位数,CRP浓度高于中位值的患者出现静脉血栓的风险是对照组的2.33倍[16]。亚型的mCRP可刺激血小板黏附受体GPIIb/IIIa的活化,从而募集血小板,促进血栓形成[17]。亦有研究表明,IL-6可诱导TF在内皮细胞及单核细胞上的表达增加,从而促使内皮细胞功能障碍和血小板活化[18],其被认为是促凝的主要细胞因子。miR-338-5p可拮抗IL-6,限制miR-338-5p促进IL-6的表达,因此,具有抗IL-6抗体或促进miR-338-5p表达,可减轻深静脉血栓的形成[19],除此之外,损伤的内皮细胞、活化的单核细胞和血小板早期产生的促炎细胞因子IL-1α可桥接凝血过程和炎症反应,促进血栓形成。
1.2 中医药干预PACS炎症反应促血栓形成的机制综上,炎症可能是PACS相关血栓形成的原因之一,中医认为,炎症状态是气血不足,运化失司,湿热、瘀血于体内滋生导致。久病所致正气不足,外邪侵袭,故其基本病机为本虚标实。治法多以清热化湿、活血化瘀、益气补虚为主。目前无论是基础实验还是临床试验,均表明中医药可对该病理过程起到抑制作用。丹参作为化瘀行血,祛瘀生新的常见中药,其相关复方广泛应用于正虚瘀阻导致的肺纤维化大鼠COVID-19治疗中,丹参有效成分丹酚酸B除了可与SARS-CoV-2的刺突蛋白等靶蛋白结合以减轻病毒活力外[20],还可降低肺纤维化大鼠TNF-α和IL-1β的转录mRNA的表达水平[21],从而抑制TF-VIIa/FXa表达以调节凝血系统[22],说明丹参具有抗病毒、抗血栓形成及抗炎的特性,在PACS患者中具有广阔的应用前景。基于深静脉血栓的Sprague-Dawley大鼠模型,研究表明,清热凉血、养阴补虚药赤芍水提取物可下调血清TF、TNF-α蛋白的表达水平并减轻静脉管壁的炎症反应以改善血栓形成造成的表现[23]。此外,大黄的主要成分大黄素已被证明可通过阻断病毒S蛋白与ACE2的结合以减轻SARS-CoV-2的侵袭[24],黄芩素也表现出类似的活性[25]。多种中药复方及中成药也具有相关临床效用,COVID-19寒湿郁肺证常用于湿邪困重,藿香正气口服液具有解表化湿,和中理气的功效,广泛用于新冠的治疗,且通过网络药理学及分子对接技术发现,藿香正气口服液中的多种有效成分(槲皮素、异鼠李素及葛花苷元等)可竞争性与SARS-CoV-2宿主细胞受体ACE2受体结合,进而阻断病毒对宿主细胞的附着[26],从而发挥对PASC的防治作用。
2 PACS对内皮细胞和血小板的影响及中医药的干预机制 2.1 PACS对内皮细胞及血小板的影响内皮细胞也参与PACS的血栓形成机制中[27]。生理情况下,血管内壁由单层内皮细胞构成,并通过内皮细胞表达多种酶及受体调节血管动态平衡,以维持血管壁的完整性,从而拮抗血栓形成,然而其损伤之后,可促进血栓的形成[28]。研究发现,SARS-CoV-2可能通过影响内皮细胞来改变血管动态平衡。一方面,如前所述,SARS-CoV-2可与内皮细胞上的ACE2受体结合,从而致ACE2表达下调,使Ang Ⅱ过度活化[29],从而激活激肽释放酶-激肽系统(KKS),促进血栓形成,另一方面,SARS-CoV-2还可使细胞表面的刺突蛋白表达增加,从而介导细胞内黏附分子-1(I-CAM1)、血管细胞黏附蛋白-1(VCAM1)和紧密连接支架蛋白(ZO-1)破坏增加,从而损伤内皮细胞[30],因此有研究者认为,血管损伤或修复相关因子水平降低可作为PACS的预后指标[31]。以上过程导致内皮细胞损伤,细胞间的紧密连接破坏,血管屏障完整性下降,从而暴露含有胶原的内皮下基质,刺激血小板的激活和招募,促进血栓形成[32]。此外,血管假性血友病因子(VWF)是在内皮细胞内合成并储存,当内皮细胞被激活后可分泌VWF,可将血小板和白细胞束缚在血管壁上,从而促进血栓形成[33]。研究显示,COVID-19患者的VWF水平普遍较高,这增加了COVID-19患者的高凝状态和VTE率的风险。同时,激活的内皮细胞还可表达一种招募血小板和白细胞的细胞黏附分子,即P-选择素,其能诱导单核细胞TF高表达,扰乱内皮细胞的血管稳态,促进凝血反应[34]。据Manne等[35]研究发现,与常人相比COVID-19患者的P-选择素水平显著升高,从而导致大量血小板聚合。与此同时,激活的内皮细胞还可释放细胞营养因子,进而放大以上过程,并进一步刺激和招募血小板,而招募的血小板可释放血管内皮生长因子(VEGF),VEGF能刺激并促进内皮细胞表达转铁蛋白,最终刺激凝血级联反应[36]。因此,功能失调的内皮细胞可能是PACS血栓形成的主要致病环节。除通过内皮细胞能间接影响血小板外,血小板功能的失调可能与SARS-CoV-2诱发的慢性炎症有关,如介导血小板聚集的p38/MAPK通路的过度激活可能与升高的IL-6与IL-1β有关[35],这对PACS患者血栓的形成可能具有促进作用。有研究发现,血小板可吞噬聚集病原体,并通过分泌释放的介质及产物以抑制病毒感染[37],然而,过度活化的血小板虽可限制SARS-CoV-2的复制及传染,但亦可升高栓塞的风险。因此,内皮细胞与血小板可协同增加PACS血栓发生的风险,同时,在抗血小板聚集时,也应该积极抗病毒处理。
2.2 中医药干预PACS的血小板及内皮细胞的协同机制多种中药以及复方能针对血小板及内皮细胞的协同作用进行干预。克冠一号具有清热化湿的功效,由金银花、丁香、连翘、桑叶、菊花、薏苡仁及浙贝母组成,临床试验(NCT04251871)中的治疗效果显示,与对照组相比,克冠一号组COVID-19相关后遗症的发生率从26.1%下降至4.2%,解热时间是对照组一半(P < 0.05)[38]。动物实验结果提示,克冠一号能降低脂多糖诱导的急性肺损伤小鼠的ICAM-1水平,表明克冠一号对血管内皮细胞有一定保护作用[39]。热毒宁注射液具有清热解毒、疏风散热等作用,由金银花、青蒿、栀子提取而来,被推荐治疗热毒郁肺所致的重型和危重型COVID-19。清肺排毒汤由麻黄、石膏、泽泻和猪苓等药组成,可治疗寒湿性的新冠肺炎。其中槲皮素、木犀草素等作为热毒宁注射液[40]和清肺排毒汤[41]的有效成分可通过作用于ICAM1靶点而有效改善COVID-19患者症状。人参相关制剂也广泛应用于COVID-19患者中,并取得可观疗效[42],如参附注射液源于参附汤作为回阳救逆的经典方剂联合抗生素可降低临床患者E-选择素及VWF水平,以减少血管内皮细胞损伤,改善心肺功能[43]。此外,动物实验表明,人参皂苷R0、RG3不仅可以抑制P-选择素的过表达[44],还可剂量依赖性地抑制MAPK的磷酸化及MAPK上游激活分子MKK4的磷酸化,进而抑制血小板的活化及血栓形成。
3 PACS血液黏稠度增加致相关血栓形成及中医药干预机制 3.1 PACS血液黏稠度增加致相关血栓形成机制研究表明,COVID-19患者血液黏稠度明显升高[45]。Forconi等[46]认为,血液黏稠度的增加与血栓患病风险升高成正比,其升高不仅诱发内皮损伤和功能障碍,还可以直接导致血栓形成。纤维蛋白原是血液黏稠度的主要决定因素,大量研究发现,PACS患者凝血物质如D-二聚体和纤维蛋白原的水平也明显升高[47],在多变量Cox分析中,纤维蛋白原与白蛋白的比值已被证明是COVID进展的预测因素[48]。基于人脐静脉内皮细胞研究发现,纤维蛋白原可诱导纤溶酶原激活物抑制剂-1(PAI-1)高表达导致内皮细胞表面纤溶活性降低,加剧血栓的发生发展。同时,临床研究发现,113例COVID-19患者的PAI-1的水平明显高于24例非COVID-19呼吸道感染患者及健康人[49]。活性和含量升高的PAI-1可与组织型纤溶酶原激活物(t-PA)结合,从而使t-PA失活,抑制纤维蛋白水解和细胞外基质降解,最终促进血栓形成。因此,该通路的激活可能促进了PACS相关血栓的形成。
3.2 中医药干预PACS血液黏稠度增加致血栓形成的机制蛭芎胶囊具有消栓通脉、活血祛瘀之效,临床上常用来治疗瘀血性病证。实验研究发现蛭芎胶囊能显著提高急性肺血栓栓塞的SD大鼠t-PA水平,降低PAI-1和VWF水平,并能通过增加纤溶活性以降低血液黏稠度,进而抑制血栓的形成[50-51]。在下腔静脉结扎导致静脉血栓的血瘀大鼠模型中,丹参素可显著降低血液黏稠度、红细胞压积水平,从而抑制大鼠血栓的形成[52]。在治疗PACS的过程中,郁金、丹红注射液等中药及中药注射剂等均显示出较好的抗血液凝滞的功效,尽管受限于相关的研究,但多数中药具有不同程度的缓解血栓形成的作用,并积极应用到PACS患者中,可以预见,随着对相关机制的了解增多,可逐渐揭示相关中药有效成分在血液凝滞状态下对相关分子及通路的转录表达及其对血栓形成的影响。
4 小结与展望SARS-CoV-2具有很强的感染能力,可造成全身多个器官和系统的功能紊乱,其中一个重要的病理特征就是凝血功能异常。在PACS患者中,会出现凝血指标水平升高,如D-二聚体、凝血蛋白原、血小板及其他凝血参数等。造成这些参数异常的原因涉及多方面因素,包括免疫炎症与凝血这两个系统之间的相互作用,感染SARS-CoV-2后,机体的防御系统过度激活和分泌大量炎症细胞因子,导致内皮损伤,多种原因介导的血小板激活以及PACS患者出现的血液凝滞状态等都会造成凝血参数的异常。
由于SARS-CoV-2对人体全身的多个器官和系统都可能造成严重影响,摆脱COVID-19急性期的PACS患者恢复期间依然会受到相关并发症的影响,这涉及到多个致病机制,在COVID-19相关的凝血病中,SARS-CoV-2感染后凝血障碍发生的分子机制、相关的凝血因子及调节蛋白在体内平衡中的作用尚未完全明确,其可能与炎症反应相关,细胞因子的炎症作用可以导致血管内皮细胞活化和内皮损伤,从而导致血栓前兆。血小板在COVID-19中的作用以及血小板活化过程仍不完全清楚,并且对于SARS-CoV-2是否能够直接与血小板相互作用,目前尚存争议。
有充分证据表明中医药可以改善COVID-19患者的症状,延缓疾病进展,降低病死率,且存在许多高质量证据,并构建了以中医药治疗COVID-19患者为基础的循证指南。中药方剂治疗疾病拥有多成分、多靶点、多途径的特性,能够针对PACS患者持续性免疫炎症失调、内皮损伤、血小板过度激活及血液凝滞等病理特征进行纠正。例如清肺排毒汤、热毒宁注射液等中药复方在治疗COVID-19患者中扮演了重要角色,而可以预料的是,随着COVID-19的感染人数持续上升,PACS患者数量也将进一步增高,但是在PACS患者中相关研究较少,因此完善中医药干预PACS的高质量研究或扩大随访范围,以提供中医药在防治PACS疗效相关完整的证据链是有必要的。
[1] |
YUKI K, FUJIOGI M, KOUTSOGIANNAKI S. COVID-19 pathophysiology: a review[J]. Clinical Immunology, 2020, 215(7): 108427. |
[2] |
MALIK P, PATEL K, PINTO C, et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)-a systematic review and meta-analysis[J]. Journal of Medical Virology, 2022, 94(1): 253-262. DOI:10.1002/jmv.27309 |
[3] |
HUANG C L, HUANG L X, WANG Y M, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study[J]. The Lancet, 2021, 397(10270): 220-232. DOI:10.1016/S0140-6736(20)32656-8 |
[4] |
TABOADA M, CARIÑENA A, MORENO E, et al. Post-COVID-19 functional status six-months after hospitalization[J]. The Journal of Infection, 2021, 82(4): e31-e33. DOI:10.1016/j.jinf.2020.12.022 |
[5] |
PATELL R, BOGUE T, KOSHY A, et al. Postdischarge thrombosis and hemorrhage in patients with COVID-19[J]. Blood, 2020, 136(11): 1342-1346. DOI:10.1182/blood.2020007938 |
[6] |
LLITJOS J F, LECLERC M, CHOCHOIS C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients[J]. Journal of Thrombosis and Haemostasis: JTH, 2020, 18(7): 1743-1746. DOI:10.1111/jth.14869 |
[7] |
RUAN Q R, YANG K, WANG W X, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China[J]. Intensive Care Medicine, 2020, 46(5): 846-848. DOI:10.1007/s00134-020-05991-x |
[8] |
AHAMED J, LAURENCE J. Long COVID endotheliopathy: hypothesized mechanisms and potential therapeutic approaches[J]. The Journal of Clinical Investigation, 2022, 132(15): e161167. DOI:10.1172/JCI161167 |
[9] |
COLARUSSO C, MAGLIO A, TERLIZZI M, et al. Post-COVID-19 patients who develop lung fibrotic-like changes have lower circulating levels of IFN-β but higher levels of IL-1α and TGF-Β[J]. Biomedicines, 2021, 9(12): 1931. DOI:10.3390/biomedicines9121931 |
[10] |
SONG J W, ZHANG C, FAN X, et al. Immunological and inflammatory profiles in mild and severe cases of COVID-19[J]. Nature Communications, 2020, 11(1): 3410. DOI:10.1038/s41467-020-17240-2 |
[11] |
PAVONI V, GIANESELLO L, PAZZI M, et al. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia[J]. Journal of Thrombosis and Thrombolysis, 2020, 50(2): 281-286. DOI:10.1007/s11239-020-02130-7 |
[12] |
JOHNSON J E, MCGUONE D, XU M L, et al. Coronavirus disease 2019(COVID-19) coronary vascular thrombosis: correlation with neutrophil but not endothelial activation[J]. The American Journal of Pathology, 2022, 192(1): 112-120. DOI:10.1016/j.ajpath.2021.09.004 |
[13] |
HUANG M, CAI S L, SU J Q. The pathogenesis of sepsis and potential therapeutic targets[J]. International Journal of Molecular Sciences, 2019, 20(21): 5376. DOI:10.3390/ijms20215376 |
[14] |
BENATI M, SALVAGNO G L, NITTO S, et al. Thrombin generation in patients with coronavirus disease 2019[J]. Seminars in Thrombosis and Hemostasis, 2021, 47(4): 447-450. DOI:10.1055/s-0041-1722844 |
[15] |
ACKERMANN M, VERLEDEN S E, KUEHNEL M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19[J]. The New England Journal of Medicine, 2020, 383(2): 120-128. DOI:10.1056/NEJMoa2015432 |
[16] |
SMILOWITZ N R, KUNICHOFF D, GARSHICK M, et al. C-reactive protein and clinical outcomes in patients with COVID-19[J]. European Heart Journal, 2021, 42(23): 2270-2279. DOI:10.1093/eurheartj/ehaa1103 |
[17] |
MOLINS B, PEÑA E, DE LA TORRE R, et al. Monomeric C-reactive protein is prothrombotic and dissociates from circulating pentameric C-reactive protein on adhered activated platelets under flow[J]. Cardiovascular Research, 2011, 92(2): 328-337. DOI:10.1093/cvr/cvr226 |
[18] |
AHMAD F, KANNAN M, ANSARI A W. Role of SARS-CoV-2-induced cytokines and growth factors in coagulopathy and thromboembolism[J]. Cytokine & Growth Factor Reviews, 2022, 63(3): 58-68. |
[19] |
ZHANG Y H, ZHANG Z, WEI R, et al. IL(interleukin)-6 contributes to deep vein thrombosis and is negatively regulated by miR-338-5p[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40(2): 323-334. DOI:10.1161/ATVBAHA.119.313137 |
[20] |
ELMAATY A A, DARWISH K M, KHATTAB M, et al. In a search for potential drug candidates for combating COVID-19:computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins[J]. Journal of Biomolecular Structure & Dynamics, 2022, 40(19): 8866-8893. |
[21] |
WANG L, ZHU T, FENG D Q, et al. Polyphenols from Chinese herbal medicine: molecular mechanisms and therapeutic targets in pulmonary fibrosis[J]. The American Journal of Chinese Medicine, 2022, 50(4): 1063-1094. DOI:10.1142/S0192415X22500434 |
[22] |
ZHANG T Y, LIU M J, GAO Y H, et al. Salvianolic acid B inhalation solution enhances antifibrotic and anticoagulant effects in a rat model of pulmonary fibrosis[J]. Biomedicine & Pharmacotherapy=Biomedecine & Pharmacotherapie, 2021, 138(7): 111475. |
[23] |
LU Z Q, YE Y X, LIU Y C, et al. Aqueous extract of Paeoniae Radix Rubra prevents deep vein thrombosis by ameliorating inflammation through inhibiting GSK3β activity[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2021, 92(6): 153767. |
[24] |
HO T Y, WU S L, CHEN J C, et al. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction[J]. Antiviral Research, 2007, 74(2): 92-101. DOI:10.1016/j.antiviral.2006.04.014 |
[25] |
SU H X, YAO S, ZHAO W F, et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients[J]. Acta Pharmacologica Sinica, 2020, 41(9): 1167-1177. DOI:10.1038/s41401-020-0483-6 |
[26] |
DENG Y, LIU B, HE Z, et al. Research on active compounds of Huoxiang Zhengqi Oral Liquid to prevent new coronavirus pneumonia (COVID-19) based on network pharmacology and molecular docking[J]. Chinese Herbal Medicines, 2020, 51(5): 1113-1122. |
[27] |
BARALE C, MELCHIONDA E, MOROTTI A, et al. Prothrombotic phenotype in COVID-19:focus on platelets[J]. International Journal of Molecular Sciences, 2021, 22(24): 13638. DOI:10.3390/ijms222413638 |
[28] |
OLSON J D. D-dimer: An overview of hemostasis and fibrinolysis, assays, and clinical applications[J]. Advances in Clinical Chemistry, 2015, 69(7): 1-46. |
[29] |
VERDECCHIA P, CAVALLINI C, SPANEVELLO A, et al. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection[J]. European Journal of Internal Medicine, 2020, 76(7): 14-20. |
[30] |
BUZHDYGAN T P, DEORE B J, BALDWIN-LECLAIR A, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier[J]. Neurobiology of Disease, 2020, 146(6): 105131. |
[31] |
VIANELLO A, GUARNIERI G, BRACCIONI F, et al. The pathogenesis, epidemiology and biomarkers of susceptibility of pulmonary fibrosis in COVID-19 survivors[J]. Clinical Chemistry and Laboratory Medicine, 2021, 60(3): 307-316. |
[32] |
PERICO L, BENIGNI A, CASIRAGHI F, et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19[J]. Nature Reviews Nephrology, 2021, 17(1): 46-64. DOI:10.1038/s41581-020-00357-4 |
[33] |
LENTING P J, CHRISTOPHE O D, DENIS C V. Von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends[J]. Blood, 2015, 125(13): 2019-2028. DOI:10.1182/blood-2014-06-528406 |
[34] |
HUANG C L, WANG Y M, LI X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. The Lancet, 2020, 395(10223): 497-506. DOI:10.1016/S0140-6736(20)30183-5 |
[35] |
MANNE B K, DENORME F, MIDDLETON E A, et al. Platelet gene expression and function in patients with COVID-19[J]. Blood, 2020, 136(11): 1317-1329. DOI:10.1182/blood.2020007214 |
[36] |
TEUWEN L A, GELDHOF V, PASUT A, et al. COVID-19:The vasculature unleashed[J]. Nature Reviews Immunology, 2020, 20(7): 389-391. DOI:10.1038/s41577-020-0343-0 |
[37] |
WOOL G D, MILLER J L. The impact of COVID-19 disease on platelets and coagulation[J]. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 2021, 88(1): 15-27. DOI:10.1159/000512007 |
[38] |
WANG J B, WANG Z X, JING J, et al. Exploring an integrative therapy for treating COVID-19:a randomized controlled trial[J]. Chinese Journal of Integrative Medicine, 2020, 26(9): 648-655. DOI:10.1007/s11655-020-3426-7 |
[39] |
BAI Z F, LI P Y, WEN J C, et al. Inhibitory effects and mechanisms of the anti-COVID-19 traditional Chinese prescription, Keguan-1, on acute lung injury[J]. Journal of Ethnopharmacology, 2022, 285(11): 114838. |
[40] |
WANG C, SUN S S, DING X S. The therapeutic effects of traditional Chinese medicine on COVID-19:a narrative review[J]. International Journal of Clinical Pharmacy, 2021, 43(1): 35-45. DOI:10.1007/s11096-020-01153-7 |
[41] |
LI X H, XIANG L, LIN Y, et al. Computational analysis illustrates the mechanism of Qingfei Paidu Decoction in blocking the transition of COVID-19 patients from mild to severe stage[J]. Current Gene Therapy, 2022, 22(3): 277-289. DOI:10.2174/1566523221666210907162005 |
[42] |
HUANG Y F, BAI C, HE F, et al. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019(COVID-19)[J]. Pharmacological Research, 2020, 158(6): 104939. |
[43] |
李娜, 盛柯杰, 彭贵鑫, 等. 参附注射液辅助抗生素对重症肺炎病人临床症状消退时间、内皮细胞损伤程度因子及肺功能的影响[J]. 实用老年医学, 2019, 33(8): 764-767. LI N, SHENG K J, PENG G X, et al. Effect of Shenfu Injection assisted with antibiotics on the subsided time of clinical symptoms, endothelial cell damage factor and pulmonary function in elderly patients with severe pneumonia[J]. Practical Geriatrics, 2019, 33(8): 764-767. |
[44] |
SHIN J H, KWON H W, RHEE M H, et al. Inhibitory effects of total saponin Korean red ginseng on thromboxane A2Production and P-selectin expression via suppressing mitogen-activated protein kinases[J]. Biomedical Science Letters, 2017, 23(4): 310-320. DOI:10.15616/BSL.2017.23.4.310 |
[45] |
RENOUX C, FORT R, NADER E, et al. Impact of COVID-19 on red blood cell rheology[J]. British Journal of Haematology, 2021, 192(4): e108-e111. |
[46] |
FORCONI S, PIERAGALLI D, GUERRINI M, et al. Primary and secondary blood hyperviscosity syndromes, and syndromes associated with blood hyperviscosity[J]. Drugs, 1987, 33(Suppl 2): 19-26. |
[47] |
LIU M Q, LYU F J, HUANG Y, et al. Follow-up study of the chest CT characteristics of COVID-19 survivors seven months after recovery[J]. Frontiers in Medicine, 2021, 54(8): 636298. |
[48] |
BI X J, SU Z X, YAN H X, et al. Prediction of severe illness due to COVID-19 based on an analysis of initial Fibrinogen to Albumin Ratio and Platelet count[J]. Platelets, 2020, 31(5): 674-679. DOI:10.1080/09537104.2020.1760230 |
[49] |
DIETRICH K, BALL G D C, MITCHELL L G. Increased plasminogen activator inhibitor results in a hypofibrinolytic state in adolescents with obesity: in vivo and ex vivo evidence[J]. British Journal of Haematology, 2016, 175(2): 300-307. DOI:10.1111/bjh.14238 |
[50] |
ZHOU J J, SONG Z H, HAN M S, et al. Evaluation of the antithrombotic activity of Zhi-Xiong Capsules, a traditional Chinese medicinal formula, via the pathway of anti-coagulation, anti-platelet activation and anti-fibrinolysis[J]. Biomedicine & Pharmacotherapy, 2018, 97(12): 1622-1631. |
[51] |
DONG H, REN J X, WANG J J, et al. Chinese medicinal leech: Ethnopharmacology, phytochemistry, and pharmacological activities[J]. Evidence-Based Complementary and Alternative Medicine: ECAM, 2016, 2016(12): 7895935. |
[52] |
WANG J P, FANG C Y, WANG S X, et al. Danggui Buxue Tang ameliorates bleomycin-induced pulmonary fibrosis in rats through inhibiting transforming growth factor-β1/Smad3/plasminogen activator inhibitor-1 signaling pathway[J]. Journal of Traditional Chinese Medicine, 2020, 40(2): 236-244. |