[1] |
Bisset NG. Arrow poisons in China. Part Ⅱ. Aconitum-botany, chemistry and pharmacology[J]. J Ethnopharmacol, 1981, 4(3): 247-336. DOI:10.1016/0378-8741(81)90001-5 |
[2] | |
[3] |
Omura T. Forty years of cytochrome P450[J]. Biochemical and Biophysical Research Communications, 1999, 266(3): 690-698. DOI:10.1006/bbrc.1999.1887 |
[4] | |
[5] |
Axel M, Dagmar S, Peter HR, et al. Expression and inducibility of cytochrome P4503A9(CYP3A9) and other members of the CYP3A subfamily in rat liver[J]. Archives of Biochemistry and Biophysics, 1997, 337(1): 1-7. DOI:10.1006/abbi.1996.9768 |
[6] |
Kiyoshi N, Makoto O, Miki S, et al. Structure and expression of the rat CYP3A1 gene:isolation of the gene (P450/6βB) and characterization of the recombinant protein[J]. Archives of Biochemistry and Biophysics, 1999, 362(2): 242-253. DOI:10.1006/abbi.1998.1030 |
[7] |
Lan T, Ling Y, Chang L, et al. Involvement of CYP3A4/5 and CYP2D6 in the metabolism of aconitine using human liver microsomes and recombinant CYP450 enzymes[J]. Toxicology Letters, 2011, 202(1): 47-54. DOI:10.1016/j.toxlet.2011.01.019 |
[8] |
Ling Y, Tao W, Yang CH, et al. Microsomal cytochrome P450-mediated metabolism of hypaconitine, an active and highly toxic constituent derived from Aconitum species[J]. Toxicology Letters, 2011, 204(1): 81-91. DOI:10.1016/j.toxlet.2011.04.015 |
[9] |
Ling Y, Lan T, Yun G, et al. Characterization of metabolites and human P450 isoforms involved in the microsomal metabolism of mesaconitine[J]. Xenobiotica, 2011, 41(1): 46-58. DOI:10.3109/00498254.2010.524950 |
[10] |
Wang YG, Wang SQ, Liu YX, et al. Characterization of metabolites and cytochrome P450 isoforms involved in the microsomal metabolism of aconitine[J]. Journal of Chromatography B, 2006, 844(2): 292-300. DOI:10.1016/j.jchromb.2006.07.059 |
[11] | |
[12] | |
[13] |
李晗, 王宇光, 马增春, 等. 乌头碱、新乌头碱和次乌头碱对CYP3A4抑制作用研究[J]. 中国新药杂志, 2017, 26(9): 999-1004. |
[14] | |
[15] |
Zhu LJ, Yang XS, Zhou J, et al. The exposure of highly toxic aconitine does not significantly impact the activity and expression of cytochrome P4503A in rats determined by a novel ultraperformance liquid chromatography-tandem mass spectrometric method of a specific probe buspirone[J]. Food and Chemical Toxicology, 2013, 51: 396-403. DOI:10.1016/j.fct.2012.10.008 |
[16] |
Wu JJ, Cheng ZX, Zhu LJ, et al. Coadministration of Pinellia ternata Can signifcantly reduce aconitum carmi-chaelii to inhibit CYP3A Activity in Rats[J]. Evidence-Based Complementary and Alternative Medicine, 2014, 1-10. |
[17] |
Xiao Y, Ma ZC, Wang YG, et al. Cardioprotection of Shenfu preparata on cardiac myocytes through cytochrome P450[J]. Journal of Integrative Medicine, 2013, 11(5): 327-336. DOI:10.3736/jintegrmed2013047 |
[18] |
Skrupskii Va, Plaksin SE. Changes in the fatty acid composition of the phospholipids in the internal organs of rats during the modelling of aconitine arrhythmia[J]. Eksp Klin Farmakol, 1994, 57(4): 53-55. |
[19] | |
[20] | |
[21] |
Ding F, Shao ZW, Yang SH, et al. Role of mitochondrial pathway in compression-induced apoptosis of nucleus pulposus cells[J]. Apoptosis, 2012, 17: 579-590. DOI:10.1007/s10495-012-0708-3 |
[22] | |
[23] |
Sun GB, Sun H, Meng XB, et al. Aconitine-induced Ca 2+ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats[J]. Toxicology and Applied Pharmacology, 2014, 279(1): 8-22. DOI:10.1016/j.taap.2014.05.005 |
[24] |
Alexander Db, Goldberg-GS. Transfer of biologically important molecules between cells through gap junction channals[J]. Curr Med Chem, 2003, 10(19): 2045-2058. DOI:10.2174/0929867033456927 |
[25] | |
[26] | |
[27] |
Zhang SW, Liu Y, Huang GZ, et al. Aconitine alters connexin43 phosphorylation status and[J]. Toxicology in Vitro, 2007, 21(8): 1476-1485. DOI:10.1016/j.tiv.2007.06.013 |
[28] | |
[29] | |
[30] |
Wright SN. Comparison of aconitine-modified human heart (hH1) and rat skeletal (1) muscle Na + channels:an important role for external Na + ions[J]. Journal of Physiology, 2002, 538(3): 759-771. DOI:10.1113/jphysiol.2001.012915 |
[31] |
Wang SY, Wang GK. Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins[J]. Cellular Signalling, 2003, 15(2): 151-159. DOI:10.1016/S0898-6568(02)00085-2 |
[32] | |
[33] | |
[34] |
Wang YJ, Chen BS, Lin MW, et al. Time-dependent block of ultrarapid-delayed rectier K1 currents by aconitine, a potent cardiotoxin, in heart-derived H9c2 myoblasts and in neonatal rat ventricular myocytes[J]. Toxicological Sciences, 2008, 106(2): 454-463. DOI:10.1093/toxsci/kfn189 |
[35] | |
[36] | |
[37] |
Geoffrey SP, Roger DZ, Andy H, et al. Molecular basis of calmodulin tethering and Ca 2+-dependent inactivation of L-type Ca 2+ channels[J]. The Journal of Biological Chemistry, 2001, 276(33): 30794-30802. DOI:10.1074/jbc.M104959200 |
[38] |
Fabien B, Jerome L, LeGuennec J, et al. Ca 2+ currents in cardiac myocytes:Old story, new insights[J]. Progress in Biophysics and Molecular Biology, 2006, 91: 1-82. DOI:10.1016/j.pbiomolbio.2005.01.001 |
[39] |
Zhou YH, Piao XM, Liu X, et al. Arrhythmogenesis toxicity of aconitine is related to intracellular Ca 2+ signals[J]. International Journal of Medical Sciences, 2013, 10(9): 1242-1249. DOI:10.7150/ijms.6541 |
[40] |
Wu JJ, Wang XC, Chung YY, et al. L-Type calcium channel inhibition contributes to the proarrhythmic effects of aconitine in human cardiomyocytes[J]. Plos one, 2017, 12(1): 1-18. |
[41] |
Fu M, Wu M, Wang JF, et al. Disruption of the intracellular Ca 2+ homeostasis in the cardiac excitation-contraction coupling is a crucial mechanism of arrhythmic toxicity in aconitine-induced cardiomyocytes[J]. Biochemical and Biophysical Research Communications, 2007, 354(4): 929-936. DOI:10.1016/j.bbrc.2007.01.082 |
[42] | |
[43] | |
[44] | |
[45] | |
[46] |
Zhang YY, Yu L, Jin WF, et al. Reducing toxicity and increasing efficiency aconitine with liquiritin and glycyrrhetinic acid regulate calcium regulatory proteins in rat myocardial cell[J]. Afr J Tradit Complement Altern Med, 2017, 14(4): 69-79. DOI:10.21010/ajtcam |
[47] | |
[48] | |
[49] | |