[1] |
Bangalore S, Schwamm L, Smith E, et al. Secondary prevention after ischemic stroke or transient ischemic attack[J]. American Journal of Medicine, 2014, 127(8): 728-738. DOI:10.1016/j.amjmed.2014.03.011 |
|
[2] |
Wu X, Zhu B, Fu L, et al. Prevalence, incidence, and mortality of stroke in the chinese island populations:a systematic review[J]. Plos One, 2013, 8(11): e78629. DOI:10.1371/journal.pone.0078629 |
|
[3] |
Ji Z, Liu K, Cai L, et al. Therapeutic effect of t-PA in ischemic stroke is enhanced by its combination with normobaric oxygen and hypothermia or ethanol[J]. Brain Research, 2015, 1627: 31-40. DOI:10.1016/j.brainres.2015.08.019 |
|
[4] |
Zhang B, Xu X, Chu X, et al. Protective effects of angiopoietin-like 4 on the blood-brain barrier in acute ischemic stroke treated with thrombolysis in mice[J]. Neuroscience Letters, 2017, 645: 113-120. DOI:10.1016/j.neulet.2017.03.001 |
|
[5] |
Qian JY, Chopp M, Liu Z. Mesenchymal stromal cells promote axonal outgrowth alone and synergistically with astrocytes via t-PA[J]. Plos One, 2016, 11(12): e0168345. DOI:10.1371/journal.pone.0168345 |
|
[6] |
Emberson J, Lees KR, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke:a meta-analysis of individual patient data from randomised trials[J]. Lancet, 2014, 384(9958): 1929-1935. DOI:10.1016/S0140-6736(14)60584-5 |
|
[7] |
Zhu H, Fan X, Yu Z, et al. Annexin A2 combined with low-dose t-PA improves thrombolytic therapy in a rat model of focal embolic stroke[J]. J Cereb Blood Flow Metab, 2010, 30(6): 1137-1146. DOI:10.1038/jcbfm.2009.279 |
|
[8] |
Jin XC, Sun YY, Xu J, et al. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells[J]. Journal of Neurochemistry, 2015, 132(6): 724-730. DOI:10.1111/jnc.2015.132.issue-6 |
|
[9] |
Pan R, Yu K, Weatherwax T, et al. Blood occludin level as a potential biomarker for early blood brain barrier damage following ischemic stroke[J]. Scientific Reports, 2017, 7: 40331-40339. DOI:10.1038/srep40331 |
|
[10] |
Neuwelt EA, Bauer B, Fahlke C, et al. Engaging neuroscience to advance translational research in brain barrier biology[J]. Nature Reviews Neuroscience, 2011, 12(3): 169-182. DOI:10.1038/nrn2995 |
|
[11] |
Ishiguro M, Mishiro K, Fujiwara Y, et al. Phosphodiesterase-Ⅲ inhibitor prevents hemorrhagic transformation induced by focal cerebral ischemia in mice treated with t-PA[J]. Plos One, 2010, 5(12): e15178. DOI:10.1371/journal.pone.0015178 |
|
[12] |
Liu J, Jin X, Liu K J, et al. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2012, 32(9): 3044-3057. DOI:10.1523/JNEUROSCI.6409-11.2012 |
|
[13] |
Madaro L, Antonangeli F, Favia A, et al. Knock down of caveolin-1 affects morphological and functional hallmarks of human endothelial cells[J]. Journal of Cellular Biochemistry, 2013, 114(8): 1843-1851. DOI:10.1002/jcb.v114.8 |
|
[14] |
Galaup A, Gomez E, Souktani R, et al. Protection against myocardial infarction and no-reflow through preservation of vascular integrity by angiopoietin-like 4[J]. Circulation, 2012, 125(1): 140-149. DOI:10.1161/CIRCULATIONAHA.111.049072 |
|
[15] | |
|
[16] |
Bouleti C, Mathivet T, Coqueran B, et al. Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke[J]. European Heart Journal, 2013, 34(47): 3657-3668. DOI:10.1093/eurheartj/eht153 |
|
[17] |
Yang Y, Rosenberg G A. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease[J]. Stroke, 2011, 42(11): 3323-3328. DOI:10.1161/STROKEAHA.110.608257 |
|
[18] |
Ren C, Li N, Wang B, et al. Limb ischemic perconditioning attenuates blood-brain barrier disruption by inhibiting activity of MMP-9 and occludin degradation after focal cerebral ischemia[J]. Aging & Disease, 2015, 6(6): 406-417. |
|
[19] |
Bojarski C, Weiske J, Schoneberg TW, et al. The specific fates of tight junction proteins in apoptotic epithelial cells[J]. Journal of Cell Science, 2004, 117(10): 2097-2107. DOI:10.1242/jcs.01071 |
|
[20] |
Kazmierski R, Michalak S, Wencel-Warot A, et al. Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients[J]. Neurology, 2012, 79(16): 1677-1685. DOI:10.1212/WNL.0b013e31826e9a83 |
|
[21] | |
|
[22] |
Ishii H, Yoshida M, Hiraoka M, et al. Recombinant annexin Ⅱ modulates impaired fibrinolytic activity in vitro and in rat carotid artery[J]. Circulation Research, 2001, 89(12): 1240-1245. DOI:10.1161/hh2401.101066 |
|
[23] |
Tanaka Y, Ishii H, Hiraoka M, et al. Efficacy of recombinant annexin 2 for fibrinolytic therapy in a rat embolic stroke model:A magnetic resonance imaging study[J]. Brain Research, 2007, 1165(13): 135-143. |
|
[24] | |
|
[25] |
Walvick RP, Brtane BT, Henninger N, et al. Visualization of clot lysis in a rat embolic stroke model:application to comparative lytic efficacy[J]. Stroke, 2011, 42(4): 1110-1115. DOI:10.1161/STROKEAHA.110.602102 |
|
[26] |
Wang X, Fan X, Yu Z, et al. Effects of tissue plasminogen activator and annexin A2 combination therapy on long-term neurological outcomes of rat focal embolic stroke[J]. Stroke, 2014, 45(2): 619-622. DOI:10.1161/STROKEAHA.113.003823 |
|
[27] |
Sun X, Budas GR, Xu L, et al. Selective activation of protein kinase C in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice[J]. Journal of Neuroscience Research, 2013, 91(6): 799-807. DOI:10.1002/jnr.v91.6 |
|
[28] | |
|
[29] |
Selvatici R, Marino S, Piubello C, et al. Protein kinase C activity, translocation, and selective isoform subcellular redistribution in the rat cerebral cortex after in vitro ischemia[J]. Journal of Neuroscience Research, 2003, 71(1): 64-71. DOI:10.1002/(ISSN)1097-4547 |
|
[30] |
Arai K, Lee SR, Lo EH. Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase-9 regulation in rat cortical astrocytes[J]. Glia, 2003, 43(3): 254-264. DOI:10.1002/(ISSN)1098-1136 |
|
[31] |
Tan Z, Lucke-Wold BP, Logsdon AF, et al. Bryostatin extends t-PA time window to 6 h following middle cerebral artery occlusion in aged female rats[J]. European Journal of Pharmacology, 2015, 764: 404-412. DOI:10.1016/j.ejphar.2015.07.035 |
|
[32] | |
|
[33] | |
|
[34] |
Lee JH, Lee YK, Ishikawa M, et al. Cilostazol reduces brain lesion induced by focal cerebral ischemia in rats-an MRI study[J]. Brain Research, 2003, 994(1): 91-98. DOI:10.1016/j.brainres.2003.09.021 |
|
[35] |
Shinohara Y, Katayama Y, Uchiyama S, et al. Cilostazol for prevention of secondary stroke (CSPS 2):an aspirin-controlled, double-blind, randomised non-inferiority trial[J]. Lancet Neurology, 2010, 9(10): 942-943. DOI:10.1016/S1474-4422(10)70217-9 |
|
[36] | |
|
[37] |
Su Y, Fan W, Ma Z, et al. Taurine improves functional and histological outcomes and reduces in ammation in traumatic brain injury[J]. Neuroscience, 2014, 266: 56-65. DOI:10.1016/j.neuroscience.2014.02.006 |
|
[38] | |
|
[39] |
Sun M, Zhao Y, Gu Y, et al. Anti-inflammatory mechanism of taurine against ischemic stroke is related to down-regulation of PARP and NF-κB[J]. Amino Acids, 2012, 42: 1735-1747. DOI:10.1007/s00726-011-0885-3 |
|
[40] |
Rong J, Adam Y, Shan L, et al. Taurine reduces t-PA (tissue-type plasminogen activator)-induced hemorrhage and microvascular thrombosis after embolic stroke in rat[J]. Stroke, 2018, 49: 8-10. |
|
[41] | |
|
[42] | |
|