文章信息
- 佟小芳, 崔元璐
- TONG Xiaofang, CUI Yuanlu
- 脓毒症生物标记物的研究进展
- Research progress of biomarkers in sepsis
- 天津中医药大学学报, 2019, 38(1): 100-104
- Journal of Tianjin University of Traditional Chinese Medicine, 2019, 38(1): 100-104
- http://dx.doi.org/10.11656/j.issn.1673-9043.2019.01.25
-
文章历史
收稿日期: 2018-09-30
全身性炎症反应综合征(SIRS)是由感染或非感染因素引起的多种细胞因子参与的复杂的全身炎症反应[1]。SIRS与不可逆性休克、急性呼吸窘迫综合征、多器官系统衰竭等疾病的发生发展密切相关,同时SIRS是急救科(ICU)患者死亡的第一原因[2],因此研究SIRS发生机制具有重要的理论意义和临床应用价值。
近年来研究者对SIRS的发病机制进行了深入研究。根据发病机制可分为感染型SIRS即脓毒症和非感染型SIRS,两者临床表现相似,难以区分,加大了治疗难度。目前西医临床主要以发热、白细胞(WBC)计数及中性粒细胞分类升高、血沉(ESR)增快、C-反应蛋白(CRP)升高以及病原体检查阳性等作为脓毒症的诊断依据[3]。这些诊断方法虽然敏感,但是缺乏特异性,其中病原体检查可以用于脓毒症诊断,但是诊断时间长,并不适用于危重病患者[4]。中医学对SIRS的发病机制也有研究,涉及到气血、阴阳、脏腑、津液的失调等。刘欣[5]从阴阳学说角度对SIRS的抗炎和促炎反应进行了阐述。同时有学者对91例SIRS患者进行四诊合参诊断,并通过聚类分析将SIRS患者分别积淤化热、湿热内蕴和气随血脱3种症型[6]。但中医评判标准不统一,诊断差异较大。因此临床上还需要更为准确的指标,以早期诊断SIRS,并及时给予针对性治疗措施。在SIRS中涉及到数百个介质和单体,其中已有许多被提出具有生物标记物的潜力,文章旨在对目前诊断脓毒症的生物学标记物进行综述。
1 降钙素原(PCT)1993年首次提出PCT具有作为脓毒症和感染型疾病生物标志物的潜力,目前研究最为广泛[7]。在正常条件下,血浆中几乎检测不到PCT,而当机体受到内毒素等感染时,可诱导生成PCT并随着感染程度的加重持续释放,因此PCT与炎症反应程度密切相关。同时PCT可反映脓毒症的程度,通过对脓毒症,重度脓毒症和脓毒症休克患者体内的PCT水平进行检测,结果表明脓毒症休克患者体内的PCT水平最高[(12.89±4.39)ng/mL],重度脓毒症患者PCT水平显著高于脓毒症或非感染型SIRS患者(6.91±3.8)ng/mL vs(0.53±2.9)ng/mL;P<0.001、(0.41±3.04)ng/mL;P<0.001[8-9]。Becker KL等[10]证实当机体受到细菌内毒素刺激后,PCT水平在4~12 h内增加,而当宿主通过免疫系统控制了炎症反应的进程或进行抗生素治疗时,体内循环的PCT水平每日减半。有研究表明,当PCT浓度大于0.5 ng/mL时,脓毒症发生的概率较高,且浓度大于2 ng/mL则与脓毒症的发生有显著相关性[11]。PCT对脓毒症的敏感性以及其有利的代谢动力学特征使得通过动态检测PCT水平对诊断脓毒症,病情发展的监控以及治疗均具有重要的临床意义。
有研究者通过对60名细菌脓毒症患者和39名非感染型SIRS患者体内的PCT和CRP水平进行分析得出脓毒症患者体内PCT的平均浓度为11.28 ng/mL,而非感染型SIRS患者体内PCT的平均浓度为0.272 ng/mL,两者间具有统计学差异。以PCT大于0.5 ng/mL为评判标准时,PCT的敏感性为97.4%,特异性为96.6%,均高于CRP[12]。Miglietta F等[13]将患者分成3个组,细菌感染的脓毒症组,非脓毒症组和念珠菌感染的脓毒症组,分别在第0天和第2天检测PCT、CRP、血小板计数(PLT)和血清乳酸脱氢酶(LDH),结果表明细菌感染脓毒症组的PCT和CRP浓度显著高于非感染型SIRS组而PLT和LDH在两组间无差异。经统计PCT对细菌性感染脓毒症的灵敏度和特异度分别为84.3%和81.8%,CRP的灵敏度为77.2%,特异度为63.6%。同时发现PCT在非感染型SIRS组和念珠菌感染的脓毒症组间无统计学差异,说明在判断是否为念珠菌感染时仍需要其他特异性标记物。另有报道称,一些非感染型SIRS,如新生儿出生应激,热休克等炎症反应以及老年人体内的PCT水平表达均偏高[14]。PCT表达的升高提示脓毒症的发生,具有良好的特异性和灵敏性,对早期的临床诊断、鉴别和指导用药有重要的参考价值。
2 脂多糖结合蛋白(LPS-LBP)及其受体LBP属于I型急性期蛋白,当机体存在LPS时,可以与LBP结合形成LPS-LBP复合物。CD14是LPS的高亲和力受体,主要在单核/巨噬细胞表面表达。LPS-LBP复合物与CD14结合,进而与TRL4受体结合,激活丝裂原活化蛋白激酶和核细胞因子NF-κB通路[15-16]。在正常生理条件下,LBP在血液中的含量大约是5~10 μg/mL,而当机体受到LPS刺激后,急性反应期间LBP的含量可急速升高到200 μg/mL。因此可认为LBP是感染型疾病潜在的生物学标记物[17]。但有学者表示,LBP与病情严重程度关联度不强,并不适用于临床应用[18]。同时,Prucha M等[19]通过对非感染型SIRS患者,脓毒症患者和脓毒症休克患者血清中的LBP检测发现,LBP在脓毒症休克患者体内的浓度显著高于非感染型SIRS患者和脓毒症患者,但在这两者之间无差异。因此证明LBP是急性期反应的非特异性标志物,不能作为区分SIRS感染性和非感染性病因的诊断工具。
sCD14在免疫调节以及炎症反应中有重要的作用,目前已经确定了一种可溶性CD14形式,并命名为可溶性CD14亚型(sCD14-ST)[20]。研究发现sCD14在脓毒症患者中显著升高,认为sCD14可以作为脓毒症快速诊断及监测脓毒症疾病严重性的生物标记物[21]。同时有研究者论证了sCD14-ST作为脓毒症诊断的标记物,与血培养相比,sCD14-ST可20 min内完成检测[22]。Romualdo LG等[23]纳入226例SIRS急诊患者,对CRP和sCD14-ST浓度进行统计,结果表明sCD14-ST在脓毒症中的浓度显著高于非感染型SIRS,ROC曲线和AUC分析得出sCD14-ST在区分感染型和非感染型SIRS的相关值为0.75,高于CRP的相关值0.602。同时有研究表明脓毒症的严重程度与sCD14-ST浓度有显著相关性,经检测发现正常人体内的sCD14-ST浓度为(294.2±121.4)pg/mL;局部感染者体内的sCD14-ST浓度为(721.0±61.3)pg/mL;非感染型SIRS患者体内的sCD14-ST浓度为(333.5±130.6)pg/mL;脓毒症患者体内的sCD14-ST浓度为(817.9±572.7)pg/mL;严重脓毒症患者体内的sCD14-ST浓度为(1992.9±509.2)pg/mL;提示sCD14-ST可作为反映SIRS的临床参数[24]。Blanco A等[25]对感染革兰阳性菌和革兰阴性菌的新生儿的sCD14-ST、CRP、IL-6以及TNF-α进行检测发现sCD14-ST在革兰阴性菌感染的新生儿体内的含量(4.04±1.00 μg/mL)显著高于革兰阳性菌(2.63±1.20 μg/mL)。综上所述,sCD14-ST做作为诊断脓毒症并指导抗菌药物使用临床参数,具有良好的应用前景。
3 细胞因子细胞因子作为免疫调节剂,存在于所有有核细胞中[26]。脓毒症患者血清中的平均细胞因子水平显著高于正常人。因此,细胞因子已被认为是新生儿和成人脓毒症的生物标志物[27]。有研究者对TNF-α和IL-10在新生儿脓毒症患者以及非感染型SIRS患者中进行比较。结果表明,新生儿脓毒症患者TNF-α和IL-10在血清中的表达水平显著高于新生儿非感染型SIRS患者,且严重程度与TNF-α和IL-10表达水平正相关[28]。Jekarl DW等[29]对97例脓毒症患者在内的127例SIRS患者的13种细胞因子进行了评估。研究证明IL-6有助于脓毒症的诊断,IL-6和IL-5具有鉴别脓毒症严重程度的性质,IFNγ与脓毒症的严重程度呈明显的负相关。但是通过层次聚类分析生成的细胞因子谱并不能区分脓毒症和非感染型SIRS,因此需要进一步的研究来开发临床应用。目前处于研究阶段的细胞因子抗体芯片(CAC),可同时检测79种细胞因子,高通量分析脓毒症患者血清中炎症因子的表达[30]。初步探讨了以细胞因子表达指纹谱作为脓毒症诊断标志物的可行性,有助于开发更好的诊断工具和有效的辅助脓毒症治疗方法。
4 可溶性髓系细胞触发表达受体1(sTREM-1)2001年Bouchon A等[31]首次报道了TREM-1是作为介导脓毒症休克的关键介质,可触发并扩大炎症反应。然而TREM-1只在细胞膜表面表达,不便于临床检测。sTREM-1作为TREM-1的亚型,在感染早期即可分泌到体液中,可通过酶联免疫吸附等测定方法进行检测。血液中sTREM-1水平的升高可间接反映早期炎症阶段TREM-1表达的增加[32]。在对严重脓毒症患者中CRP、PCT和sTREM-1进行检测的结果中发现,死亡组的sTREM-1的浓度显著高于存活组,而CRP和PCT无显著性变化。说明血浆中sTREM-1作为严重脓毒症患者诊断标记物更为可靠[33]。Bellos I等[34]对有关sTREM-1的十一项研究以及1 795位患者进行了Meta分析,分析结果表明sTREM-1对脓毒症诊断的敏感性是0.79,特异性是0.80,正似然比,负似然比和诊断优势比分别为4.0,0.26和16。同时提出sTREM-1单独作为脓毒症的生物标记物是不够的。sTREM-1表达水平升高可能提示脓毒症,具有生物标记物潜质,但其是否能够单独作为脓毒症的标记物还需进一步实验研究。
5 血清MicroRNAMicroRNA(miRNA)是一类长约23nt的内源性非编码RNA,作为转录后基因调节因子,通过裂解或是抑制mRNA的翻译,起到调控蛋白表达的作用[35]。近期在血液中发现miRNA,这使将miRNA作为疾病标志物成为可能[36]。最近研究证明,血清或血浆的miRNA水平稳定性和重复性好。已有多个miRNA的特异性表达图谱作为不同疾病评估预后的“指纹识别”[37-38]。因此寻找一种针对脓毒症高度特异性和高度敏感性的miRNA成为科研工作者的研究热点之一。研究证实多种miRNA的表达水平与脓毒症有关,如miRNA-15a、miRNA-146a、miRNA-223、miRNA-297以及miRNA-574-5p等,可作为脓毒症、非感染型SIRS和正常者间的鉴别诊断标志物[39-41]。其中miRNA-15a被证实在脓毒症患者血清中的表达量显著高于非感染型SIRS,而与非感染型SIRS患者以及健康人比较,脓毒症患者血清中miRNA-146a和miRNA-223水平则显著降低[40]。miRNA574-5p水平和脓毒症患者死亡相关,说明其可作为脓毒症患者结局的预测因子[42]。同时有研究发现miRNA378A-3P、miRNA30A-5P、miRNA30-5p和miRNA192-5p的水平可反映非感染型SIRS的严重程度[43]。
6 联合应用考虑到引起脓毒症感染的微生物多种多样,宿主的病理反应相当复杂,检测单一因子未必能够为脓毒症的发生,发展和预后提供可靠的信息。多种标记物联合应用或许可以解决这个问题,目前有研究将PCT,TREM-1和中性粒细胞CD64指数(PMN CD64 index)作为标记物进行分析,选取300例患者,其中156例为脓毒症患者,经检测脓毒症患者血清中的PCT,TREM-1浓度以及PMN CD64 index显著高于非脓毒症组,这3种生物标志物联合诊断脓毒症的AUC为0.97,高于PCT,TREM-1和PMN CD64 index单独诊断时的AUC(分别为0.91、0.95和0.73),并提出生物标记物联合可提高诊断脓毒症的能力[44]。在准确高效的前提下,生物标记物联合应用诊断脓毒症仍面临着很多挑战。
7 展望在危重病患者中SIRS的发病率和病死率居高不下,脓毒症作为感染型SIRS在临床上很常见且具有致死性。为了提高脓毒症诊断的准确性和高效性,仍需要更多的研究来明确这些生物标志物在脓毒症中是如何发挥作用和变化的,从而明确生物标志物对脓毒症诊断及治疗的价值。
[1] |
Balk RA. Systemic inflammatory response syndrome (SIRS):where did it come from and is it still relevant today[J]. Virulence, 2014, 5: 20-26. DOI:10.4161/viru.27135 |
[2] |
Castelli GP, Pognani C, Cita M, et al. Procalcitonin, C-reactive protein, white blood cells and SOFA score in ICU:diagnosis and monitoring of sepsis[J]. Minerva anestesiologica, 2006, 72: 69-80. |
[3] |
Leli C, Cardaccia A, Ferranti M, et al. Procalcitonin better than C-reactive protein, erythrocyte sedimentation rate, and white blood cell count in predicting DNAemia in patients with sepsis[J]. Scandinavian journal of infectious diseases, 2014, 46: 745-752. DOI:10.3109/00365548.2014.936493 |
[4] |
Neugebauer U, Trenkmann S, Bocklitz T, et al. Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy[J]. Journal of biophotonics, 2014, 7: 232-240. DOI:10.1002/jbio.201400010 |
[5] |
刘欣. 试述全身炎症反应综合征中的阴阳观[J]. 江西中医药, 2010, 41(3): 15-16. DOI:10.3969/j.issn.0411-9584.2010.03.007 |
[6] |
高迪, 张勇, 贾斌, 等. 全身炎症反应综合征中医证型的聚类分析[J]. 中国中医急症, 2012, 21(1): 27-28, 67. DOI:10.3969/j.issn.1004-745X.2012.01.014 |
[7] |
Assicot M, Gendrel D, Carsin H, et al. High serum procalcitonin concentrations in patients with sepsis and infection[J]. Lancet (London, England), 1993, 341: 515-518. DOI:10.1016/0140-6736(93)90277-N |
[8] |
Brunkhorst FM, Eberhard OK, Brunkhorst R. Discrimination of infectious and noninfectious causes of early acute respiratory distress syndrome by procalcitonin[J]. Critical care medicine, 1999, 27: 2172-2176. DOI:10.1097/00003246-199910000-00016 |
[9] |
Brunkhorst FM, Wegscheider K, Forycki ZF, et al. Procalcitonin for early diagnosis and differentiation of SIRS, sepsis, severe sepsis, and septic shock[J]. Intensive care medicine, 2000, 26 Suppl 2: S148-52. |
[10] |
Becker KL, Nylen ES, White JC, et al. Clinical review 167:Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis:a journey from calcitonin back to its precursors[J]. The Journal of clinical endocrinology and metabolism, 2004, 89: 1512-1525. DOI:10.1210/jc.2002-021444 |
[11] |
Toh H, Harada S, Kakudou T, et al. Usefulness of Procalcitonin Measurement for the Detection of Sepsis[J]. Rinsho byori The Japanese journal of clinical pathology, 2014, 62: 931-936. |
[12] |
Beqja-Lika A, Bulo-Kasneci A, Refatllari E, et al. Serum procalcitonine levels as an early diagnostic indicator of sepsis[J]. Materia socio-medica, 2013, 25: 23-25. DOI:10.5455/msm. |
[13] |
Miglietta F, Faneschi ML, Lobreglio G, et al. Procalcitonin, C-reactive protein and serum lactate dehydrogenase in the diagnosis of bacterial sepsis, SIRS and systemic candidiasis[J]. Le infezioni in medicina:rivista periodica di eziologia, epidemiologia, diagnostica, clinica e terapia delle patologie infettive, 2015, 23: 230-7. |
[14] |
Reinhart K, Meisner M. Biomarkers in the critically ill patient:procalcitonin[J]. Critical care clinics, 2011, 27: 253-263. DOI:10.1016/j.ccc.2011.01.002 |
[15] |
Laugerette F, Alligier M, Bastard JP, et al. Overfeeding increases postprandial endotoxemia in men:Inflammatory outcome may depend on LPS transporters LBP and sCD14[J]. Molecular nutrition & food research, 2014, 58: 1513-1518. |
[16] |
Fang L, Xu Z, Wang GS, et al. Directed evolution of an LBP/CD14 inhibitory peptide and its anti-endotoxin activity[J]. Plos one, 2014, 9: e101406. DOI:10.1371/journal.pone.0101406 |
[17] |
Gutsmann T, Haberer N, Carroll SF, et al. Interaction between lipopolysaccharide (LPS), LPS-binding protein (LBP), and planar membranes[J]. Biological chemistry, 2001, 382: 425-434. |
[18] |
Sakr Y, Burgett U, Nacul FE, et al. Lipopolysaccharide binding protein in a surgical intensive care unit:a marker of sepsis[J]. Critical care medicine, 2008, 36: 2014-2022. DOI:10.1097/CCM.0b013e31817b86e3 |
[19] |
Prucha M, Herold I, Zazula R, et al. Significance of lipopolysaccharide-binding protein (an acute phase protein) in monitoring critically ill patients[J]. Critical care (London, England), 2003, 7: R154-9. DOI:10.1186/cc2386 |
[20] |
Yaegashi Y, Shirakawa K, Sato N, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis[J]. Journal of infection and chemotherapy:official journal of the Japan Society of Chemotherapy, 2005, 11: 234-238. DOI:10.1007/s10156-005-0400-4 |
[21] |
Mussap M, Puxeddu E, Puddu M, et al. Soluble CD14 subtype (sCD14-ST) presepsin in premature and full term critically ill newborns with sepsis and SIRS[J]. Clinica chimica acta; international journal of clinical chemistry, 2015, 451: 65-70. DOI:10.1016/j.cca.2015.07.025 |
[22] |
Okamura Y, Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST)[J]. Clinica chimica acta; international journal of clinical chemistry, 2011, 412: 2157-2161. DOI:10.1016/j.cca.2011.07.024 |
[23] |
Romualdo LG, Torrella PE, Gonzalez MV, et al. Diagnostic accuracy of presepsin (soluble CD14 subtype) for prediction of bacteremia in patients with systemic inflammatory response syndrome in the Emergency Department[J]. Clinical biochemistry, 2014, 47: 505-508. DOI:10.1016/j.clinbiochem.2014.02.011 |
[24] |
Shozushima T, Takahashi G, Matsumoto N, et al. Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome[J]. Journal of infection and chemotherapy:official journal of the Japan Society of Chemotherapy, 2011, 17: 764-769. DOI:10.1007/s10156-011-0254-x |
[25] |
Blanco A, Solis G, Arranz E, et al. Serum levels of CD14 in neonatal sepsis by Gram-positive and Gram-negative bacteria[J]. Acta paediatrica (Oslo, Norway:1992), 1996, 85: 728-732. DOI:10.1111/apa.1996.85.issue-6 |
[26] |
Said EA, Dupuy FP, Trautmann L, et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection[J]. Nature medicine, 2010, 16: 452-459. DOI:10.1038/nm.2106 |
[27] |
Sherwin C, Broadbent R, Young S, et al. Utility of interleukin-12 and interleukin-10 in comparison with other cytokines and acute-phase reactants in the diagnosis of neonatal sepsis[J]. American journal of perinatology, 2008, 25: 629-636. DOI:10.1055/s-0028-1090585 |
[28] |
Wu Y, Li C, He Y, et al. Relationship between expression of microRNA and inflammatory cytokines plasma level in pediatric patients with sepsis[J]. Chinese journal of pediatrics, 2014, 52: 28-33. |
[29] |
Jekarl DW, Kim JY, Lee S, et al. Diagnosis and evaluation of severity of sepsis via the use of biomarkers and profiles of 13 cytokines:a multiplex analysis[J]. Clinical chemistry and laboratory medicine, 2015, 53: 575-581. |
[30] |
石玉玲, 胡塔. 细胞因子抗体芯片筛选脓毒症患者血清蛋白标记物[J]. 细胞与分子免疫学杂志, 2011, 27(9): 1010-1013. |
[31] |
Bouchon A, Facchetti F, Weigand MA, et al. TREM-1 amplifies inflammation and is a crucial mediator of septic shock[J]. Nature, 2001, 410: 1103-1107. DOI:10.1038/35074114 |
[32] |
Gomez-Pina V, Soares-Schanoski A, Rodriguez-Rojas A, et al. Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes[J]. Journal of immunology (Baltimore, Md:1950), 2007, 179: 4065-4073. DOI:10.4049/jimmunol.179.6.4065 |
[33] |
Jeong SJ, Song YG, Kim CO, et al. Measurement of plasma sTREM-1 in patients with severe sepsis receiving early goal-directed therapy and evaluation of its usefulness[J]. Shock (Augusta, Ga), 2012, 37: 574-578. DOI:10.1097/SHK.0b013e318250da40 |
[34] |
Bellos I, Fitrou G, Daskalakis G, et al. Soluble TREM-1 as a predictive factor of neonatal sepsis: a meta-analysis[J]. 2018. https://link.springer.com/article/10.1007%2Fs00011-018-1149-4
|
[35] |
Caserta S, Kern F, Cohen J, et al. Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS)[J]. Scientific reports, 2016, 6: 28006. DOI:10.1038/srep28006 |
[36] |
Cortez MA, Calin GA. MicroRNA identification in plasma and serum:a new tool to diagnose and monitor diseases[J]. Expert opinion on biological therapy, 2009, 9: 703-711. DOI:10.1517/14712590902932889 |
[37] |
Liu R, Zhang C, Hu Z, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis[J]. European journal of cancer (Oxford, England:1990), 2011, 47: 784-791. DOI:10.1016/j.ejca.2010.10.025 |
[38] |
Keller A, Leidinger P, Borries A, et al. miRNAs in lung cancer-studying complex fingerprints in patient's blood cells by microarray experiments[J]. BMC cancer, 2009, 9: 353. DOI:10.1186/1471-2407-9-353 |
[39] |
Wang H, Zhang P, Chen W, et al. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects[J]. Clinical chemistry and laboratory medicine, 2012, 50: 1423-1428. |
[40] |
Wang JF, Yu ML, Yu G, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis[J]. Biochemical and biophysical research communications, 2010, 394: 184-188. DOI:10.1016/j.bbrc.2010.02.145 |
[41] |
Wang L, Wang HC, Chen C, et al. Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients[J]. Experimental and therapeutic medicine, 2013, 5: 1101-1104. DOI:10.3892/etm.2013.937 |
[42] |
Wang H, Meng K, Chen W, et al. Serum miR-574-5p:a prognostic predictor of sepsis patients[J]. Shock (Augusta, Ga), 2012, 37: 263-267. DOI:10.1097/SHK.0b013e318241baf8 |
[43] |
Caserta S, Mengozzi M, Kern F, et al. Severity of Systemic Inflammatory Response Syndrome Affects the Blood Levels of Circulating Inflammatory-Relevant MicroRNAs[J]. Frontiers in immunology, 2017, 8: 1977. |
[44] |
Gibot S, Bene MC, Noel R, et al. Combination biomarkers to diagnose sepsis in the critically ill patient[J]. American journal of respiratory and critical care medicine, 2012, 186: 65-71. DOI:10.1164/rccm.201201-0037OC |