天津中医药大学学报  2019, Vol. 38 Issue (5): 512-517

文章信息

蔡雨孜, 崔换天, 王丽, 边育红
CAI Yuzi, CUI Huantian, WANG Li, BIAN Yuhong
间充质干细胞外泌体作用机制的研究进展
A review: mechanism studies of mesenchymal stem cell derived exosomes
天津中医药大学学报, 2019, 38(5): 512-517
Journal of Tianjin University of Traditional Chinese Medicine, 2019, 38(5): 512-517
http://dx.doi.org/10.11656/j.issn.1673-9043.2019.05.23

文章历史

收稿日期: 2019-07-10
间充质干细胞外泌体作用机制的研究进展
蔡雨孜1 , 崔换天1 , 王丽2 , 边育红1     
1. 天津中医药大学, 天津 301617;
2. 天津市第二人民医院, 天津 300192
摘要: 间充质干细胞(MSC)来源于中胚层,具有修复组织损伤的作用。外泌体是细胞分泌的囊泡样物质,与来源细胞功能相似。近年来,间充质干细胞来源外泌体(MSC-exo)受到广泛关注,其生物学特性及作用机制成为研究热点。本文就外泌体特性及间充质干细胞来源外泌体在治疗疾病中作用机制作一综述。
关键词: 间充质干细胞    外泌体    作用机制    
A review: mechanism studies of mesenchymal stem cell derived exosomes
CAI Yuzi1 , CUI Huantian1 , WANG Li2 , BIAN Yuhong1     
1. Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China;
2. Tianjin Second People's Hospital, Tianjin 300192, China
Abstract: Mesenchymal stem cell (MSC), derived from mesoblast, has been demonstrated to have tissue repairing function. Exosomes are small vesicae released by cells and have been demonstrated to have similar function of originate cells. These years, many researches have focused on the biological functions of mesenchymal stem cell derived exosomes (MSC-exo). The authors looked up the literatures and made a review about the functions and mechanisms of MSC-exo in the treatment of diseases.
Key words: MSC    exosomes    mechanism    

间充质干细胞(MSC)属成体干细胞(ASCs),其来源组织丰富,如:骨髓、脐带组织、胎盘组织等,具有多向的分化潜能[1-2],又因便于采集,免疫排斥低,伦理争议小等优点[3]备受青睐,成为再生医学研究热点。研究发现MSC参与机体免疫调节,组织修复和血管生成等过程,具有改善肝纤维化、慢性肾损伤、心血管再灌注损伤等作用。然而,单纯的MSC移植可能存在栓塞,异常分化和肿瘤形成的风险,这些因素限制了MSC的运用[4]

MSC被募集到受损组织,通过旁分泌作用分泌细胞因子,改善微环境,诱导受损器官组织结构功能修复。在旁分泌机制中,细胞分泌的微囊泡是细胞交流的主要方式,外泌体即是其中一种。外泌体广泛分布于体液中,包括血液、唾液、脑脊液等,可来源于多种细胞,其中以MSC分泌外泌体(MSC-exo)能力较强[5]。目前,已有很多文献报道MSC-exo有MSC相似功能[6],与单纯应用MSC相比,具有性质稳定、方便保存,无免疫原型的特点[7],更好弥补MSC移植应用中的不足,这使得MSC-exo备受瞩目,外泌体及MSC-exo作用机制逐渐被发现。

1 外泌体的生物学特性 1.1 外泌体的起源与结构

外泌体是细胞胞膜系统通过主动分泌排出的一种直径40~150 nm的盘状小囊泡[8]。目前认为,外泌体产生的过程主要由其来源细胞通过“内陷-融合-外排”的过程分泌,可概括为三步,第一,细胞质膜凹陷形成细胞内小泡;第二,细胞内小泡进一步发展成多泡小体;第三,多泡小体与细胞质膜融合释放外泌体,受体细胞对外泌体的接受可以通过配体-受体相互作用,胞饮/吞噬或膜融合来实现[9-10]。外泌体是本质是脂质双层膜结构,其中,大部分功能性分子是蛋白质,一类是富含具有外泌体膜交换以及膜融合作用的膜联蛋白,一类是可以调节外泌体膜和受体细胞的融合的Rabs蛋白,此外,外泌体膜上富含参与外泌体运输的四跨膜蛋白家族(CD63,CD9和CD81)、热休克蛋白以及乳凝集素等[11]。不同来源的外泌体其合成分泌的RNA具有不同的结构,大量研究表明外泌体中的RNA可调控生物信息,从而影响机体生理过程[12-13]。外泌体中还含有多种脂肪酸,胆固醇和鞘磷脂,这些脂质不但作为运输信号分子的载体,还起到调节细胞内稳态的作用[14]

1.2 外泌体的功能与特性

外泌体与其来源细胞具有相似生物学功能[6],可作为介导细胞间通讯介质。诸多研究表明,外泌体携带的蛋白、mRNA、miRNA在疾病发展过程中会有明显变化,可作为疾病诊断的理想生物标记物[15]。有学者[16]发现肺癌和正常吸烟者血清外泌体中的miRNA有差异,miRNA-378a,miRNA-379,miRNA-139-5p,miRNA-200b-5p可作为区分肺癌和正常吸烟者的生物学标志。有学者[17]运用基因芯片及蛋白组学分别分析正常人与多发性骨髓瘤患者的骨髓间充质干细胞来源外泌体(BM-MSC-exo)中miRNA水平,发现骨髓瘤患者的BM-MSC-exo中miR-15a明显下调,且IL-5、CCL2在明显上调,这可能为骨髓瘤特异性标志物。

2 MSC-exo的作用机制

外泌体存在于诸多体液、细胞中,其中以MSC分泌能力为最强[18]。最初[19-21],人们认为间MSC能募集到受损组织,自主分化替代受损细胞,达到自我更新作用。但随着研究深入,在多种动物模型中发现[22-24],MSC分化能力低,并非直接参与组织再生。有研究发现[25-26],MSC培基上清液就能发挥修复受损组织损伤作用,这使得研究焦点集中于旁分泌机制,随着研究深入进一步明确细胞间信息交流的纽带是一种微型囊泡,即MSC-exo。MSC-exo不仅具备间充质干细胞移植疗效[27],同时规避移植过程中堵塞、异常分化等风险,这使得MSC-exo相关研究日益增加[28],其生物学作用机制逐步被揭示。

2.1 MSC-exo在炎症中的作用

大量实验研究表明,MSC具有抗炎作用。脐带间充质干细胞来源外泌体(huMSCs-exo,huMSC-exo)中的miR-181c可通过TLR4通路作用于巨噬细胞,降低烧伤大鼠体内TNF-α,IL-1β水平,提高IL-10水平,进而缓解烧伤引起的炎症反应[29]。MSCs上清液可通过增强肺泡巨噬细胞中精氨酸酶1(arginase-1)水平及Ym1基因表达,降低促一氧化氮合成酶表达,进而促进肺泡巨噬细胞向M2分化,缓解脂多糖造成的肺损伤,表明其可能通过外泌体产生效应[30]。MSC-exo在大鼠肾脏IRI中具有保护作用,IRI相关的组织凋亡和炎症反应在MSC-exo作用后都有明显减轻,TNF-α和caspase-3可能是这一保护作用的关键效应分子[31]。还有研究表明[32]MSCs-exo可以通过抑制单核细胞趋化蛋白1(MCP-1)的表达进而缓解激光引起的视网膜炎症损伤。

2.2 MSC-exo在氧化损伤中的作用

氧化损伤是许多疾病的发展过程中重要组成部分。病理情况下,细胞代谢产生活性氧(ROS)和活性氮(RNS)不能被及时清除,ROS/RNS具有很高的反应活性,能与细胞内的大分子物质结合,对细胞结构造成破坏。有研究表明[33]MSC-exo具有明显的抗氧化能力。人hUMSC-exo可缓解CCL4引起肝衰竭小鼠肝脏ROS及氧化应激产物8-OHdG水平,体外实验表明hUMSCs-exo可缓解CCL4与H2O2引起的肝细胞氧化损伤,这一作用可能与hUMSC-exo中的谷胱甘肽过氧化物酶(GPX1)有关。在缺氧引起的肺动脉高压模型中[34],hUMSCs-exo可调节miRNA-17/miRNA-204平衡,影响STAT3信号通路,发挥保护作用。此外[35],MSC-exo可活化抗氧化应激信号通路Nrf2/ARE,抑制p38MAPK激活,降低半胱天冬酶3(Caspase 3)水平,缓解急性肾损伤中氧化损伤。

2.3 MSC-exo调节细胞凋亡的作用

细胞凋亡是指细胞受到生理刺激发生的死亡,存在于多细胞的整个生命过程中。凋亡蛋白酶、衔接蛋白、Bcl-2和凋亡抑制蛋白(IAPs)是凋亡过程的重要分子,研究表明[36],caspase-3介导的死亡受体通路是急性肝功能衰竭主要发病机制,hUMSC-exo可通过抑制caspase-3表达,进而发挥抗凋亡的作用。hUMSC-exo还能改善缺氧心肌细胞中Bax and Bcl-2蛋白水平,降低细胞凋亡水平,缓解心肌急性缺血性损伤[37]。还有研究发现[38],小鼠BM-MSC-exo减少凋亡细胞的数量并降低caspase-3表达,改善心肌缺血及再灌注损伤。

2.4 MSC-exo影响组织细胞增殖的作用

MSC-exo还具有促进细胞增殖的作用。Akt在促进细胞增殖方面起重要作用[39],Akt作用后的脐带间充质干细胞外泌体能通过激活PDGF-D通路,促进心血管再生及心功能恢复。有学者[40]将EA.hy926细胞与hucMSC-Ex共培养,外泌体干预组有明显优势,在急性心肌损伤模型中发挥促血管生成的作用。BM-MSC-exo通过上调miR-17-92家族激活PTEN/mTOR信号通路速进细胞轴突生长[41],也有研究发现[42],MSC-外泌体还能够增加神经突分支数量和神经突的总长度,这主要通过调节胶质细胞与神经细胞中的miR133b基因的表达来实现。

2.5 MSC-exo在肿瘤中的作用

近年来,经研究人员不断探索发现外泌体是MSC作用于肿瘤的关键中介因子,并通过传递生物学信息介导细胞与细胞之间交流。越来越多的证据表明MSC-exo参与肿瘤微血管的形成并促进肿瘤细胞的生长,如MSC-exo中可通过转移miR-410促进体内肺腺癌细胞增长[43],在乳腺癌相关研究中发现[44],BM-MSC-exo可通过活化ERK1/2信号通路上调VEGF表达从而促进肿瘤血管新生;相反,有学者认为[45],MSC-exo通过miR-16调节VEGF表达,抑制癌症组织血管新生,从而影响肿瘤进展,这可能与MSC来源、动物模型、肿瘤类型有关。

2.6 其他

此外,MSC-exo能发挥促进细胞分化作用,有学者[46]发现BM-MSC-exo能促进神经元分化,miR-125b经外泌体介导被靶细胞内化后上调神经元标志物并促进其形态生成。还有研究表明[47],MSC-exo通过促进细胞迁移而促骨胶原成熟以及血管新生,在体外实验中能通过促进成纤维母细胞和脐静脉内皮细胞迁移、增殖,提高骨胶原Ⅰ,Ⅲ分泌及mRNA表达并呈剂量依赖性,这可能是MSC-exo发挥治疗作用的机制之一。MSC-exo能下调肿瘤细胞VEGF水平表达[48],主要是MSC-exo调节细胞因子分泌,改变细胞微环境,发挥旁分泌机制。最新研究表明[49]活化自吞噬功能也可能是外泌体作用机制之一,体外实验中hucMSC-Ex能抑制肾小管上皮细胞的线粒体凋亡和炎性因子的释放,增强自吞噬标记蛋白LC3B和自吞噬相关基因ATG5和ATG7在NRK-52E细胞中的表达,而抑制自噬时,作用消除,这表明,hucMSC-Ex可能通过自吞噬机制发挥作用。

3 中医药与外泌体

传统中医药博大精深,中药作用于MSC-exo的有关报道甚少,但是,传统中药对外泌体的作用已经崭露头角。中医中药认为,紫草具有凉血、活血、解毒透疹功效,现代医学研究发现,紫草的化学成分复杂,具有抗肿瘤、抗菌、抗生育、解热、止血、降血糖等广泛的药理作用。紫草素是从传统中药紫草中提取的一种萘醌类物质,并被证明有抗肿瘤活性。有研究表明[50],肿瘤细胞来源的外泌体含miR-128能够下调靶基因并促进细胞增殖,紫草素能通过减少肿瘤细胞来源外泌体抑制肿瘤细胞增殖。β-榄香烯是中药莪术的有效成分,主要用于肿瘤的临床治疗。有学者[51]发现β-榄香烯可显著抑制肿瘤细胞生长和诱导肺癌细胞凋亡,通过下调P53蛋白的表达促进肿瘤细胞外泌体的释放达到抗人肺癌作用。还有研究表明[52],中药姜黄有效成分姜黄素通过双向调节肿瘤细胞外泌体的蛋白和microRNA水平,改善内皮屏障组织,减少血管生成表型,为肿瘤细胞微环境治疗提供新方法。最新研究表明[53],地黄有效成分梓醇能通过减少ERK1/2和PARP-1的激活有效降低氧化损伤引起的细胞凋亡及钙离子内流引起的髓鞘形成障碍,减少线粒体损伤,抑制活性氧过剩,从而预防或治疗缺血性脑白质损伤。

补阳还五汤为中医传统理血方剂,具有补气、活血、通络之功效,用于治疗中风、冠心病等心血管疾病,临床效果显著,但机制尚不明确。越来越多的证据表明[54-56]补阳还五干预的MSC移植对缺血性梗塞具有良好治疗作用,然而,补阳还五汤是否直接调节MSC的血管生成作用机制不清。基于此,有学者表明[57],补阳还五汤干预后的MSC-exo可激活内皮细胞VEGF,上调miR-126的表达,抑制miR-221/222的表达,而抑制外泌体分泌后,上述作用减弱。此外,在缺血再灌注脑损伤大鼠模型中,补阳还五汤干预的MSC-exo可上调VEGF和Ki-67的表达,调节相应miRNA,从而改善缺血症状,缓解脑缺血造成的组织损伤。

速效救心丸为含化滴丸,是中国用于心血管疾病治疗的常用配方,主要成分有川芎、冰片等,具有行气活血、祛瘀止痛的功效。现代药理研究表明[58],速效救心丸可扩张冠状动脉、改善心肌缺血,具有显著的心脏保护作用。选择速效救心丸提取物体外干预心脏间充质干细胞(C-MSCs),提取外泌体,研究结果表明[59],速效救心丸可通过nSMase2通路刺激C-MSCs分泌外泌体,增强Rab27a、SYTL4和Rab27b蛋白表达水平,然而敲除Rab27b蛋白后,速效救心丸促进C-MSCs释放外泌体作用消失,这表明速效救心丸通过nSMase2通路促进外泌体分泌而发挥保护心脏作用。进一步提取速效救心丸干预C-MSCs分泌的外泌体,并将提取的外泌体与心肌细胞(CMs)共培养,研究发现[60]速效救心丸干预C-MSCs后分泌的外泌体可显著增强蛋白H3K27me3表达,显著下调脱甲基化基因UTX表达。这表明,速效救心丸通过调控心脏C-MSCs外泌体功能,促进CMs染色体重塑以及增殖,发挥抗心肌损伤的作用。

4 小结与展望

越来越多的证据表明外泌体能介导细胞间和细胞内的交流,不仅作为传输载体,也参与治疗的多个过程。MSC-exo作为信息传递的“使者”,进行细胞与外界环境的交流,从而改变病灶微环境,影响疾病的发展。虽然许多学者对MSC-exo结构、功能进行深入研究,但其在疾病治疗中的作用机制尚未完全清楚,仍需进一步探索。中医学理论体系的主要特点为整体观念与辨证论治,中医药对MSC-exo作用相关研究较少,但中医中药作为一种理化因素,可能干预细胞MSC-exo数量或质量,引起其功能的改变,通过多机制、多靶点对细胞、组织进行调控,从而发挥治疗疾病的作用,这与中医药传统理论息息相关。外泌体具有其来源细胞的相似功能,这为中医药通过外泌体影响MSC从而发挥作用相关研究提供思路,那么,中药是否通过影响外泌体发挥治疗作用及其相关机制的研究可能成为未来研究趋势。

参考文献
[1]
Zhang X, Hirai M, Cantero S, et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood:Reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from[J]. Journal of Cellular Biochemistry, 2011, 112(4): 1206-1218.
[2]
Khan WS, Adesida AB, Tew SR, et al. Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies[J]. Cell Proliferation, 2012, 45(2): 111-120. DOI:10.1111/j.1365-2184.2011.00804.x
[3]
Zhang YB. Research progress and prospect of application of human umbilical cord mesenchymal stem cells[J]. Letters in Biotechnology, 2013, 8(1): 152-154.
[4]
Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome:a novel stem cell-based therapy for cardiovascular disease[J]. Regenerative Medicine, 2011, 6(4): 481-492. DOI:10.2217/rme.11.35
[5]
Yeo RW, Lai RC, Zhang B, et al. Mesenchymal stem cell:an efficient mass producer of exosomes for drug delivery[J]. Adv Drug Deliv Rev, 2013, 65(3): 336-341. DOI:10.1016/j.addr.2012.07.001
[6]
Timmers L, Lim SK, Arslan F, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium[J]. Stem Cell Res, 2008, 1(2): 129-137. DOI:10.1016/j.scr.2008.02.002
[7]
Sokolova V, Ludwig AK, Hornung S, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy[J]. Colloids & Surfaces B Biointerfaces, 2011, 87(1): 146-150.
[8]
Mao L, Li J, Chen W X, et al. Exosomes decrease sensitivity of breast cancer cells to adriamycin by delivering microRNAs[J]. Tumor Biology, 2016, 37(4): 5247-5256. DOI:10.1007/s13277-015-4402-2
[9]
Jatta H, Ari H. Endosome maturation[J]. Embo Journal, 2011, 30(17): 3481-500. DOI:10.1038/emboj.2011.286
[10]
Li S, Hou X, Qi H, et al. Exosomes:provide naturally occurring endogenous nanocarriers for effective drug delivery strategies[J]. Progress in Chemistry, 2016, 28(2/3): 353-362.
[11]
Qin J, Xu Q. Functions and application of exosomes[J]. Acta Poloniae Pharmaceutica, 2014, 71(4): 537.
[12]
Ratajczak J, Miekus K, Kucia M, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors:evidence for horizontal transfer of mRNA and protein delivery[J]. Leukemia, 2006, 20(5): 847-56. DOI:10.1038/sj.leu.2404132
[13]
Zocco D, Ferruzzi P, Cappello F, et al. Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs[J]. Frontiers in Oncology, 2014, 4: 267.
[14]
Record M, Carayon K, Poirot M, et al. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies[J]. Biochim Biophys Acta, 2014, 1841(1): 108-120.
[15]
Qu B, Shen N. miRNAs in the Pathogenesis of Systemic Lupus Erythematosus[J]. International Journal of Molecular Sciences, 2015, 16(5): 9557.
[16]
Cazzoli R, Buttitta F, Di NM, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer[J]. Journal of Thoracic Oncology Official Publication of the International Association for the Study of Lung Cancer, 2013, 8(9): 1156-1162. DOI:10.1097/JTO.0b013e318299ac32
[17]
Roccaro AM, Sacco A, Maiso P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression[J]. Journal of Clinical Investigation, 2013, 123(4): 1542-1555. DOI:10.1172/JCI66517
[18]
Yeo RW, Lai R C, Zhang B, et al. Mesenchymal stem cell:an efficient mass producer of exosomes for drug delivery[J]. Adv Drug Deliv Rev, 2013, 65(3): 336-341. DOI:10.1016/j.addr.2012.07.001
[19]
Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenolcyte in the adult murine heart[J]. CircuIation, 2002, 105: 93-98.
[20]
Orlic D, Kajstura J, Chimenti S, et al. Bone marrow stem cells regenerate infarcted myocardium[J]. Nature, 2010, 7(s3): 86-88.
[21]
Gussoni E, Bennett RR, Muskiewicz KR, et al. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation[J]. Journal of Clinical Investigation, 2002, 110(6): 807-814. DOI:10.1172/JCI0216098
[22]
Zhu XY, Lerman A, Lerman L O. Concise Review:Mes enchymal Stem Cell Treatment for Ischemic Kidney Disease[J]. Stem Cells, 2013, 31(9): 1731-1736. DOI:10.1002/stem.1449
[23]
Otto BJ, Oie E, Shahdadfar A, et al. Intramyocardial injections of human mesenchymal stem cells following acute myocardial infarction modulate scar formation and improve left ventricular function[J]. Cell Transplantation, 2012, 21(8): 1697. DOI:10.3727/096368911X627462
[24]
Cui H T. Clinical Effect of small incision fenestration in the treatment of llumbar spinal stenosis and lumbar disc herniation[J]. China Health Standard Management, 2015, 38(2): 252-256.
[25]
Fouraschen SM, Pan Q, de Ruiter PE, et al. Secreted factors of human liver derived mesenchymal stem cells promote liver regeneration early after partial hepatectomyStem[J]. Cells Dev, 2012, 21(13): 2410-2419. DOI:10.1089/scd.2011.0560
[26]
Ionescu L, Byrne RN, Van HT, et al. Stem cell conditioned medium improves acute lung injury in mice:in vivo evidence for stem cell paracrine action[J]. American Journal of Physiology Lung Cellular & Molecular Physiology, 2012, 303(11): 967-77.
[27]
Zhang B, Shen L, Shi H, et al. Exosomes from human umbilical cord mesenchymal stem cells:identification, purification, and biological characteristics[J]. Stem Cells International, 2016, 2016(19): 1929536.
[28]
Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome:a novel stem cell-based therapy for cardiovascular disease[J]. Regenerative Medicine, 2011, 6(4): 481-492. DOI:10.2217/rme.11.35
[29]
Xiao L, Liu L, Jing Y, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates miR-181c Attenuating Burn-induced excessive inflammation[J]. Ebiomedicine, 2016, 8(C): 72-82.
[30]
Ionescu L, Byrne RN, Van HT, et al. Stem cell conditioned medium improves acute lung injury in mice:in vivo evidence for stem cell paracrine action[J]. American Journal of Physiology Lung Cellular & Molecular Physiology, 2012, 303(11): L967.
[31]
Wang R, Lin M, Li L, et al. Bone marrow mesenchymal stem cell-derived exosome protects kidney against ischemia reperfusion injury in rats[J]. Zhonghua Yixue Zazhi, 2014, 94(42): 3298-3303.
[32]
Yu B, Shao H, Su C, et al. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1[J]. Scientific Reports, 2016, 6: 34562. DOI:10.1038/srep34562
[33]
Yan Y, Jiang W, Tan Y, et al. hucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury[J]. Molecular Therapy the Journal of the American Society of Gene Therapy, 2017, 25(2): 465. DOI:10.1016/j.ymthe.2016.11.019
[34]
Lee C, Mitsialis S A, Aslam M, et al. Exosomes Mediate the Cytoprotective Action of Mesenchymal Stromal Cells on Hypoxia-Induced Pulmonary Hypertension[J]. Circulation, 2012, 126(22): 2601. DOI:10.1161/CIRCULATIONAHA.112.114173
[35]
Zhang G, Zou X, Huang Y, et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect Against Acute Kidney Injury Through Anti-Oxidation by Enhancing Nrf2/ARE Activation in Rats[J]. Kidney & Blood Pressure Research, 2016, 41(2): 119.
[36]
Li T, Yan Y, Wang B, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Liver Fibrosis[J]. Stem Cells & Development, 2013, 22(6): 845-854.
[37]
Tang Y, Zheng J, Sun Y, et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2[J]. International Heart Journal, 2009, 50(3): 377. DOI:10.1536/ihj.50.377
[38]
Wang R, Lin M, Li L, et al. Bone marrow mesenchymal stem cell-derived exosome protects kidney against ischemia reperfusion injury in rats[J]. Zhonghua Yixue Zazhi, 2014, 94(42): 3298-3303.
[39]
Ma J, Zhao Y, Sun L, et al. Exosomes Derived from Akt-Modified Human Umbilical Cord Mesenchymal Stem Cells ImproveCardiac Regeneration and Promote Angiogenesis via Activating Platelet-Derived Growth FactorD[J]. Stem Cells Transl Med, 2017, 6(1): 51-59. DOI:10.5966/sctm.2016-0038
[40]
Zhao Y, Sun X, Cao W, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury[J]. Stem Cells Int, 2015, 2015: 761768.
[41]
Zhang Y, Chopp M, Liu XS, et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons[J]. Mol Neurobiol, 2017, 54(4): 2659-2673.
[42]
Xin H, Li Y, Liu Z, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke withmultipotent mesenchymal stromal cells in rats via transfer of exosomeenriched extracellular particles[J]. Stem Cells, 2013, 31(12): 2737-2746. DOI:10.1002/stem.1409
[43]
Dong L, Pu Y, Zhang L, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410[J]. Cell Death & Disease, 2018, 9(2): 218.
[44]
Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo[J]. Cancer Letters, 2012, 315(1): 28-37. DOI:10.1016/j.canlet.2011.10.002
[45]
Park SR. Abstract 170:Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells[J]. Plos One, 2014, 74(19 Supplement): 170-170.
[46]
TakedaYS, X uQ. Neuronal Differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells[J]. PLoS One, 2015, 10(8): 72-88.
[47]
Zhang JY, Guan JJ, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. Journal of teanslational medicine, 2015, 13(49): 35-42.
[48]
Lee JK, Park SR, Jung BK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by downregulatingVEGF expression in breast cancer cells[J]. Plos One, 2016, 8(12): e84256.
[49]
Wang BY, Jia HY, Zhang B, et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy[J]. Stem Cell Research & Therapy, 2017, 8: 75.
[50]
Wei Y, Li MJ, Cui SF, et al. Shikonin inhibits the proliferation of human breast cancer cells by reducing tumor-derived exosomes[J]. molecules, 2016, 21(6): 32-37.
[51]
Li J, Jun Y, Liu A, Wang Y. β-Elemene against human lung cancer via up-regulation of P53 protein expression to promote the release of exosome[J]. LUNG, 2014, 86(2): 144-150.
[52]
Simona T, Simona F, Francesca M, et al. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21[J]. Ontarget, 2016, 30420-30439.
[53]
Cai QY, Ma T, Li CG, et al. Catalpol protects Premyelinating oligodendrocytes against ischemia-induced oxidative injury through ERK1/2 signaling pathway[J]. International Journal of Biological Science, 2016, 12(12): 1415-1426. DOI:10.7150/ijbs.16823
[54]
Kawabori M, Kuroda S, Ito M, et al. Timing and cell dose determine therapeutic effects of bone marrow stromal cell transplantation in rat model of cerebral infarct[J]. Neuropathology, 2013, 33(2): 140-148. DOI:10.1111/j.1440-1789.2012.01335.x
[55]
Miyamoto M, Kuroda S, Zhao S, et al. Bone Marrow stromal cell transplantation enhances recovery of local glucose metabolism after cerebral infarction in rats:A Serial 18F-FDG PET study[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2013, 54(1): 145.
[56]
Shen LH, Ye M, Ding XS, et al. Protective effects of MCI-186 on transplantation of bone marrow stromal cells in rat ischemic stroke model[J]. Neuroscience, 2012, 223(Complete): 315-324.
[57]
Yang J, Gao F, Zhang Y, et al. Buyang huanwu decoction (BYHWD) enhances angiogenic effect of mesenchymal stem cell by upregulating VEGF expression after focal cerebral ischemia[J]. Journal of Molecular Neuroscience, 2015, 56(4): 898-906. DOI:10.1007/s12031-015-0539-0
[58]
Ruan X, Chen T, Wang X, et al. Suxiao Jiuxin Pill protects cardiomyocytes against mitochondrial injury and alters gene expression during ischemic injury[J]. Experimental and Therapeutic Medicine, 2017, 8: 252-258.
[59]
Ruan XF, Ju CW, Shen Y, et al. Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro[J]. Acta Pharmacologica Sinica, 2018, 39(4): 72-78.
[60]
Ruan XF, Li YJ, Ju CW, et al. Exosomes from Suxiao Jiuxin Pill-treated cardiac mesenchymal stem cells decrease H3K27 demethylase UTX expression in mouse cardiomyocytes in vitro[J]. Acta Pharmacologica Sinica, 2018, 21(3): 258-252.