文章信息
- 刘玥辰, 阎星旭, 赵换, 孙桂江, 李遇伯
- LIU Yuechen, YAN Xingxu, ZHAO Huan, SUN Guijiang, LI Yubo
- 衰老的分子机制及相关代谢组学研究
- Molecular mechanism of aging and related metabolomics research
- 天津中医药大学学报, 2021, 40(2): 267-272
- Journal of Tianjin University of Traditional Chinese Medicine, 2021, 40(2): 267-272
- http://dx.doi.org/10.11656/j.issn.1673-9043.2021.02.24
-
文章历史
收稿日期: 2020-11-10
2. 天津医科大学第二医院肾脏病血液净化治疗科, 天津 300211
2. Department of Nephrology Blood Purification Treatment, Second Hospital of Tianjin Medical University, Tianjin 300211, China
衰老是一个“生命力”逐渐衰退的过程,随着机体不断衰老,其免疫器官的功能会逐渐衰退,使机体免疫力下降,加速细胞老化[1],从而引发一系列与衰老相关的疾病。经济和生活水平的日益提高,使得人们对保健养生抗衰老的需求也日益提高。传统中药在抗衰老方面具有巨大的应用价值,其可以通过多种途径抑制免疫器官的老化,提高机体免疫力,达到延缓衰老的功效。以衰老的分子机制为切入点,对国内外中药抗衰老的代谢组学研究进行综述,为临床深入探索中药延缓衰老的作用提供参考。
1 衰老的分子机制 1.1 端粒学说端粒是一种能够稳定染色体末端结构的一段DNA序列,是染色体的重要组成部分。有研究表明,随着细胞不断的增殖分化,端粒将会不断缩短,且一旦缩短到某一极限后,细胞将停止分裂自发走向凋亡[2]。端粒主要由与蛋白质相关的DNA组成,这些蛋白质与双链或单链端粒DNA相互作用,形成具有端粒维护和长度调节有序且动态的复合物[3]。
Cheung等[4]研究揭示了端粒酶在特定干细胞谱系中衰老的作用,端粒酶的活性下调可以抑制细胞增殖,从而加速细胞衰老。也有研究发现,端粒长度是决定整个哺乳动物物种寿命和癌症易感性的关键因素。TZAP(端粒锌指相关蛋白)是一种特定的端粒相关蛋白,可以与含有较低浓度的庇护素复合物的长端粒结合,启动端粒的修剪,防止异常的长端粒积累,为控制端粒长度的上限提供依据[5]。
1.2 自由基学说衰老的自由基学说是美国科学家Harman 1955年提出的,他首先指出衰老及其相关的退化性疾病基本上归因于自由基对细胞成分和结缔组织有害的攻击。自由基主要是通过由氧化酶在细胞中催化的分子氧和由铁、钴、锰等微量金属在结缔组织中的催化反应而产生的[6]。而随着机体的衰老,自由基清除系统的清除能力不断降低,导致体内自由基的累积[7]。随着年龄,遗传和环境风险因素的发展,氧化还原系统变得不平衡。过量的自由基产生过氧化氢、阴离子自由基超氧化物、羟基自由基等多种活性氧(ROS),继而导致线粒体蛋白质、脂质和DNA氧化等氧化应激的发生。氧化应激在各种疾病如关节炎,癌症,自身免疫性疾病,衰老,心血管和神经退行性疾病的发展中起重要作用。尽管中等浓度的ROS在生理过程中起着重要作用(例如信号传导途径,促有丝分裂反应,对传染性病原体的防御),但是内源性抗氧化剂的过度防御和平衡作用失败会导致氧化损伤[8]。
1.3 非酶糖基化学说非酶糖基化学说的提出起源于对糖尿病加速老化现象的研究,还原糖可以以非酶促方式与蛋白质和其他大分子中的氨基酸结合,最终会形成高级糖基化终产物(AGEs)。Monnier等[9]指出非酶糖基化会损害细胞器和蛋白质的生物功能。研究表明,AGEs自身会诱导形成反应性物种(RS),RS的积累会加速AGEs的形成,高水平的RS则引起细胞损伤。此外,也有证据表明糖基化可能与脂褐素的生成有关。由于脂褐素对有丝分裂后的细胞具有毒性作用,因此脂褐素的积累是限制细胞寿命的重要因素[10]。除此之外,许多糖基化反应的实验均是在有氧条件下进行的,所以非酶糖基化反应进行的同时常常伴随着氧自由基反应的发生,两者有着密不可分的联系。
1.4 DNA甲基化学说胞嘧啶可被脱氧核糖核酸甲基转移酶甲基化生成5-甲基胞嘧啶(5mC)[11]。5mC被称为人类基因组的第五碱基,主要与基因阻抑有关,特别是在基因的增强子和启动子区域,其通过影响转录而发挥重要作用。有研究表明,随着年龄的增长,DNA甲基化的增多或减少可以通过影响DNA的稳定性导致细胞的衰老凋亡,最终导致有害的生理效应,影响整个机体的健康[12]。Hannum等[13]通过构建衰老率的预测模型,显示出DNA甲基化受年龄、性别和特定遗传变异的影响。
1.5 自噬学说自噬是一种机体的保护性措施,通过维持控制蛋白质和细胞器的质量从而达到保护自身的效果[14]。伴侣蛋白介导的自噬(CMA),是一种蛋白水解系统,可以通过去除受损或功能异常的蛋白质来促进细胞质量控制。有研究表明CMA随着年龄的增长而降低,这强调了自噬活性随年龄上升而下降,导致与年龄相关疾病发展的可能性,加速细胞衰老[15]。
2 衰老相关代谢组学研究代谢组学是系统生物学的重要领域,可以对生命系统病理生理刺激,遗传修饰或环境压力下的动态代谢反应进行全面分析[16-18],其捕获生物化学网络中低分子量代谢物的整体变化,并在这些代谢物和整体生理状态之间建立模型,以阐明扰动部位并鉴定相关的生物标志物,揭示相关代谢途径[19-20]。有研究表明部分传统中药及其提取物具有抗衰老和预防衰老相关疾病的作用[21]。因此,研究代谢组学在中药抗衰老中的应用非常重要,其可以帮助更好地了解衰老过程,解决中药抗衰老的相关问题。
2.1 衰老的代谢途径 2.1.1 脂类代谢线粒体脂肪酸氧化途径与衰老过程可能发生的各种分子和代谢机制密切相关,长链酰基肉碱是脂肪酸氧化的中间产物。有文献报道,酰基肉碱的积累表明线粒体功能障碍[22],线粒体功能障碍可改变细胞产生能量的能力,从而改变由线粒体氧化剂产生和调节的各种重要功能[23-24]。其中,脂质代谢是长寿的重要决定因素,研究表明脂质通过各种机制调节寿命,是应激信号及相关蛋白活性的调节因子[25]。近年来,越来越多的专家们一致认为脂类及其代谢产物与体内很多化学反应密切相关,其在衰老的过程中充当着非常重要的角色,影响着多数的衰老相关疾病的病情进展及结果,并且改善脂质代谢具有明显的抗衰老作用[26-27]。
2.1.2 氨基酸代谢Rajeswari等[28]研究了大鼠大脑中谷氨酸基团(谷氨酸,γ-氨基丁酸,谷氨酰胺,天冬氨酸和丙氨酸)水平的代谢变化,结果表明,这些氨基酸水平的变化与衰老有关。随着年龄的增长,谷氨酸,谷氨酰胺和天门冬氨酸的含量下降,而γ-氨基丁酸和丙氨酸的含量则上升。谷氨酸水平的降低与其合成酶谷氨酸脱氢酶的降低有关[29-31]。谷氨酰胺酶的活性增加会分解谷氨酰胺,谷氨酰胺和ATP水平的变化将反映游离氨的相应变化[32],有研究表明衰老小鼠的大脑中氨水平更高,向实验动物中注入更高剂量的氨会增加大脑中谷氨酰胺的合成[33]。
肌肽和牛磺酸具有强烈的抗氧化性能以及抗衰老和神经保护的作用[34]。Aydn等[35]研究了肌肽和牛磺酸对半乳糖诱导大鼠的氧化应激和脑损伤的影响,结果表明肌肽和牛磺酸可能有效预防半乳糖诱导的大鼠大脑中的氧化应激,细胞凋亡和组织病理学恶化。肌肽是活性氧和醛类的有效清除剂,它能抑制脂质过氧化和蛋白质氧化[36-37]。牛磺酸由半胱氨酸和蛋氨酸合成,是细胞内主要的游离β-氨基酸。它通过清除或淬灭氧衍生的自由基来减少组织脂质过氧化作用[38]。此外,据报道牛磺酸具有抗凋亡特性[39],抗衰老作用以及作为抗氧化剂的神经保护特性[40-41]。
2.2 基于代谢组学的中药抗衰老 2.2.1 淫羊藿淫羊藿是一种著名的中草药,其中淫羊藿总黄酮(TFE)是淫羊藿的主要活性成分,TFE不仅能调节脂质代谢,而且具有激素调节、抗骨质疏松、免疫功能调节、抗氧化和抗肿瘤等作用,广泛应用于抗衰老及脂代谢紊乱等老年病的治疗[42-43]。已有药理学研究和临床实践表明淫羊藿及其活性化合物具有明显的抗胆固醇药理作用,可预防多种与年龄相关的心脑血管疾病,实现健康老龄化[44]。Yan等[45]采用液相色谱-质谱联用的代谢组学方法对衰老大鼠血清样品进行了分析,研究了TFE的抗衰老作用。结果表明,衰老的特征是脂质代谢的变化和自由基的积累。TFE给药导致超氧化物歧化酶水平显著升高,丙二醛水平显著降低,表明TFE能增强抗氧化防御系统,具有清除自由基的作用,其可能通过调节脂质代谢和抗氧化达到抗衰老作用。Wu等[46]基于代谢组学和转录组学的分析结果,进行了集成网络分析,发现TFE可通过调节3种不饱和脂肪酸代谢途径:亚油酸代谢、花生四烯酸代谢和白三烯新陈代谢来延缓衰老。总之,TFE在衰老代谢中的作用是多方面和多层次的,对TFE抗衰老脂质代谢机制的不断挖掘,可为老年医学和预防医学提供信息。
2.2.2 甘草甘草是一种药食同源植物,其表现出许多药理作用和生物学功能。有研究表明[47]甘草能改善由半乳糖诱导的衰老大鼠的认知损伤、氧化应激和细胞凋亡。为了进一步探讨甘草衰老过程中代谢谱的变化及延缓衰老的机制,Fanfan等[48]采用核磁共振代谢组学的方法对衰老大鼠的血清和尿样进行分析,并鉴定可能的生物标志物。结果表明衰老大鼠血清和尿液中牛磺酸含量均显著降低,其体内影响合成反应的关键酶:Ⅰ型半胱氨酸双加氧酶(CDO1)、半胱氨酸磺酸脱羧酶(CSAD)和Ⅰ型谷氨酸脱羧酶(GAD1)水平均有所下降。甘草给药后牛磺酸、CDO1和CSAD水平均显著升高,首次证明了牛磺酸代谢途径的调节与甘草抗衰老作用有关。
2.2.3 红参红参是人参根和根茎的主要加工产品之一,作为一种传统中药,其在维持人类健康方面具有很大作用[49-50],特别是在抗衰老及其与年龄有关的神经退行性疾病的方面[51-53]。研究表明[54-56],人参皂苷是主要的药理活性成分,它通过抑制脂肪生成,达到抗氧化和自由基清除作用,从而延缓衰老。Sun[57]基于RRLC-Q-TOF-MS的代谢组学方法来研究大鼠衰老过程的特征,结果发现能量代谢和脂质代谢水平下降,氨基酸代谢紊乱和肾功能不全是衰老过程的主要特征。红参总人参皂苷(TGRG)给药后,脂质代谢和氨基酸代谢恢复到年轻水平。这表明TGRG可能通过干预脂质代谢并调节衰老大鼠的氨基酸代谢紊乱而产生抗衰老作用。
2.2.4 其他中药除此之外,还有部分中药也通过代谢组学的技术手段研究其延缓衰老的作用。Sun等[58]采用快速分离液相色谱结合飞行时间质谱(RRLC-Q-TOF-MS)的方法研究衰老大鼠血清中标志物的变化,发现五味子的主要成分木脂素可以通过调节衰老大鼠的能量代谢、氨基酸代谢、脂质代谢和磷脂代谢,使丙酮酸、酪氨酸、磷脂酰胆碱和二氢鞘氨醇等代谢物的水平恢复正常,缓解大鼠的代谢紊乱,达到延缓衰老的作用。Gregorio等[59]采用超高效液相色谱结合高分辨质谱(UPLC-HR-MS)的方法研究了虎杖提取物白藜芦醇对健康衰老大鼠的影响。多变量分析结果表明,与对照组相比,给药组的N-甲基-2-吡啶酮-5-羧酰胺(2PY)和苯乙酰基甘氨酸(PAG)的水平显著较低,这可能与虎杖中的白藜芦醇的抗氧化作用有关。Zhao等[60]使用质子核磁共振(1H NMR)技术手段结合多元数据分析,考察使用黄芩乙醇提取物对衰老大鼠干预后血清和肝脏中代谢物的变化。代谢组学结果表明,使用黄芩进行干预后,与衰老相关生物标志物的水平显著回调,并通过影响氨基酸代谢,糖代谢和脂质代谢起到延缓衰老的作用。由此可见,代谢组学方法有助于揭示衰老的复杂机制,也是探索中药抗衰老的有用工具。
3 展望衰老是一个复杂的生理过程,其分子机制是多方位的,所以中药也从多方面发挥抗衰老的功效。在中国中药资源极其丰富的条件基础下,深入挖掘中药抗衰老作用的潜能,发挥中药巨大的抗衰老优势,为人类合理利用中药来提高自身免疫水平、延缓衰老提供坚实的理论基础,为临床抗衰老中药的研究提供广阔的前景。
[1] |
SARA F M, EZEQUIEL R M, ANA H, et al. Age-related deregulation of naive T cell homeostasis in elderly humans[J]. AGE, 2011, 33(2): 197-207. DOI:10.1007/s11357-010-9170-8 |
[2] |
ZOLE E, ZADINANE K, PLISS L, et al. Linkage between mitochondrial genome alterations, telomere length and aging population[J]. Mitochondrial DNA Part A, 2017, 29(3): 1-8. |
[3] |
GIARDINI M A, SEGATTO M, SILVA M S D, et al. Telomere and telomerase biology[J]. Progress in Molecular Biology and Translational Science, 2014, 125C(125C): 1-40. |
[4] |
CHEUNG H H, LIU X, CANTEREL-THOUENNON L, et al. Telomerase protects werner syndrome lineage-specific stem cells from premature aging[J]. Stem Cell Reports, 2014, 2(4): 534-546. DOI:10.1016/j.stemcr.2014.02.006 |
[5] |
LI J S Z, FUSTE J M, SIMAVORIAN T, et al. TZAP: A telomere-associated protein involved in telomere length control[J]. Science, 2017, 355(6325): 638-641. DOI:10.1126/science.aah6752 |
[6] |
HARMAN D. Aging: atheory based on free radical and radiation chemistry[J]. Journal of Gerontology, 1956, 11(3): 298-300. DOI:10.1093/geronj/11.3.298 |
[7] |
LOPES A C B A, PEIXE T S, MESAS A E, et al. Lead exposure and oxidative stress: ssystematic review[J]. Reviews of environmental contamination and toxicology, 2015, 236(7): 193-238. |
[8] |
ISLAM M T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurological Research, 2016, 39(1): 73-82. |
[9] |
MONNIER V M. Nonenzymatic glycosylation, the maillard reaction and the aging process[J]. Journal of Gerontology, 1990, 45(4): B105-B111. DOI:10.1093/geronj/45.4.B105 |
[10] |
NOWOTHY K, JUNG T, GRUNE T, et al. Accumulation of modified proteins and aggregate formation in aging[J]. Experimental Gerontology, 2014, 57(4): 122-131. |
[11] |
BREILING A, LYKO F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond[J]. Epigenetics & Chromatin, 2015, 8(1): 24. |
[12] |
DOZMOROV, MIKHAIL G. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes[J]. Epigenetics, 2015, 10(6): 484-495. DOI:10.1080/15592294.2015.1040619 |
[13] |
HANNUM G, GUINNEY J, ZHAO L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates[J]. Molecular Cell, 2013, 49(2): 359-367. DOI:10.1016/j.molcel.2012.10.016 |
[14] |
MARTINEZ-LOPEZ N, ATHONVARANGKUL D, SINGH R. Autophagy and aging[J]. Advances in Experimental Medicine and Biology, 2015, 847(2): 73-87. |
[15] |
CUERVO A M, WONG E. Chaperone-mediated autophagy: roles in disease and aging[J]. Cell Research, 2014, 24(1): 92-104. DOI:10.1038/cr.2013.153 |
[16] |
OLIVER FIEHN. Metabolomics-the link between genotypes and phenotypes[J]. Plant Molecular Biology, 2002, 48(1-2): 155-171. |
[17] |
NICHOLSON J K, LINDON J C. Systems biology: metabonomics[J]. Nature, 2008, 455(7216): 1054-1056. DOI:10.1038/4551054a |
[18] |
NICHOLSON J K, LINDON J C, HOLMES E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11): 1181-1189. DOI:10.1080/004982599238047 |
[19] |
KIM K, ARONOV P, ZAKHARKIN S O, et al. Urine metabolomics analysis for kidney cancer detection and biomarker discovery[J]. Molecular & Cellular Proteomics, 2009, 8(3): 558-570. |
[20] |
WANG X, SUN H, ZHANG A, et al. Potential role of metabolomics apporoaches in the area of traditional Chinese medicine: as pillars of the bridge between Chinese and Western medicine[J]. Journal of Pharmaceutical and Biome- dical Analysis, 2011, 55(5): 859-868. DOI:10.1016/j.jpba.2011.01.042 |
[21] |
DING A J, ZHENG S Q, HUANG X B, et al. Current perspective in the discovery of anti-aging agents from natural products[J]. Natural Products and Bioprospecting, 2017, 7(5): 335-404. DOI:10.1007/s13659-017-0135-9 |
[22] |
RIZZA S, COPETTI M, ROSSI C, et al. Metabolomics signature improves the prediction of cardiovascular events in elderly subjects[J]. Atherosclerosis, 2014, 232(2): 260-264. DOI:10.1016/j.atherosclerosis.2013.10.029 |
[23] |
SAMPEY B P, FREEMERMAN A J, JIMMY Z, et al. Meta- bolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation[J]. PLoS One, 2012, 7(6): e38812. DOI:10.1371/journal.pone.0038812 |
[24] |
BAYEVA M, GHEORGHIADE M, ARDEHALI H. Mitochondria as a therapeutic target in heart failure[J]. Journal of the American College of Cardiology, 2013, 61(6): 599-610. DOI:10.1016/j.jacc.2012.08.1021 |
[25] |
PUCA A A, CHATGILIALOGLU C, FERRERI C. Lipid metabolism and diet: Possible mechanisms of slow aging[J]. The International Journal of Biochemistry & Cell Biology, 2008, 40(3): 324-333. |
[26] |
HAN S, SCHROEDER E A, SILVA-GARCIA C G, et al. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan[J]. Nature, 544(7649): 185-190. DOI:10.1038/nature21686 |
[27] |
ZHAO L, ZOU X, FENG Z, et al. Evidence for association of mitochondrial metabolism alteration with lipid accumulation in aging rats[J]. Experimental Gerontology, 2014, 56(Complete): 3-12. |
[28] |
RAJESWARI T S, RADHA E. Metabolism of the glutamate group of amino acids in rat brain as a function of age[J]. Mechanisms of Ageing and Development, 1984, 24(2): 139-149. DOI:10.1016/0047-6374(84)90066-6 |
[29] |
TIMIRAS P S, HUDSON D B, OKLUND S. Changes in central nervous system free amino acids with development and aging[J]. Progress in Brain Research, 1973, 40(15): 267-275. |
[30] |
DAVIS J M, HIMWICH W A. Neurochemistry of the developing and aging mammalian brain[J]. Neurobiology of Aging, 1975, 28(4): 329-357. |
[31] |
DE KONINGVEREST I F. Glutamate metabolism in ageing rat brain[J]. Mechanisms of Ageing & Development, 1980, 13(1): 83-92. |
[32] |
BENIAMIN A M, QUASTEL J H. Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: a possible role of ammonia in brain function[J]. Journal of Neurochemistry, 1975, 25(3): 197-206. DOI:10.1111/j.1471-4159.1975.tb06953.x |
[33] |
HINDFELTi B, PIUM F, DUFFY T E. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts[J]. Journal of Clinical Investigation, 1977, 59(3): 386-396. DOI:10.1172/JCI108651 |
[34] |
FAYAZ S M, MAJID A, RAJANIKANT G K. Imidazole dipeptides: chemistry, analysis, function and effects[M]. Rsc Publication, 2015.
|
[35] |
AYDN AF, COBAN J, DOGAN-EKICI I, et al. Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model[J]. Metabolic Brain Disease, 2016, 31(2): 337-345. DOI:10.1007/s11011-015-9755-0 |
[36] |
HIPKISS A R. Carnosine and its possible roles in nutrition and health[J]. Advances in Food and Nutrition Research, 2009, 57(9): 87-154. |
[37] |
BOLDYREV A A, ALDINI G, DERAVE W. Physiology and pathophysiology of carnosine[J]. Physiological Reviews, 2013, 93(4): 1803-1845. DOI:10.1152/physrev.00039.2012 |
[38] |
SCHAFFER S, AZUMA J, TAKAHASHI K, et al. Why is taurine cytoprotective?[J]. Advances in Experimental Medicine & Biology, 2003, 526(12): 307. |
[39] |
MENZIE J, PRENTICE H, WU J Y. Neuroprotective Mechanisms of Taurine against Ischemic Stroke[J]. Brain Sciences, 2013, 3(2): 877-907. |
[40] |
EI IDRISSI A, SHEN C H, LAMOREAUX W J. Neuroprotective role of taurine during aging[J]. Amino Acids, 2013, 45(4): 735-750. DOI:10.1007/s00726-013-1544-7 |
[41] |
MENZIE J, PRENTICE H, WU J Y. Neuroprotective mechanisms of taurine against ischemic stroke[J]. Brain Sciences, 2013, 3(2): 877-907. |
[42] |
MA H, HE X, YANG Y, et al. The genus epimedium: an ethnopharmacological and phytochemical review[J]. Journal of Ethnopharmacology, 2011, 134(3): 519-541. DOI:10.1016/j.jep.2011.01.001 |
[43] |
YAN F F, LIU Y, LIU Y F, et al. Herba Epimedii water extract elevates estrogen level and improves lipid metabolism in postmenopausal women[J]. Phytotherapy Research, 2008, 22(9): 1224-1228. DOI:10.1002/ptr.2451 |
[44] |
TAN X, WENG W. Efficacy of epimedium compound pills in the treatment of the aged patients with kidney deficiency syndrome of ischemic cardio-cerebral vascular diseases[J]. Bulletin of Hunan Medical University, 1998, 23(5): 450. |
[45] |
YAN S, WU B, LIN Z, et al. Metabonomic characterization of aging and investigation on the anti-aging effects of total flavones of Epimedium[J]. Molecular BioSystems, 2009, 5(10): 1204. DOI:10.1039/b816407j |
[46] |
WU B, XIAO X, LI S, et al. Transcriptomics and metabonomics of the anti-aging properties of total flavones of epimedium in relation to lipid metabolism[J]. Journal of Ethnopharmacology, 2018. |
[47] |
ZHOU Y Z, ZHAO F F, GAO L, et al. Licorice extract attenuates brain aging of\r, d\r, -galactose induced rats through inhibition of oxidative stress and attenuation of neuronal apoptosis[J]. RSC Advances, 2017, 7(75): 47758-47766. DOI:10.1039/C7RA07110H |
[48] |
FANFAN Z, LI G, MEI Q X, et al. The intervention effect of Licorice in D-galactose induced aging rats by regulating taurine metabolism pathway[J]. Food & Function, 2018. |
[49] |
LIU C X, XIAO P G. Recent advances on ginseng research in China[J]. Journal of Ethnopharmacology, 1992, 36(1): 27-38. DOI:10.1016/0378-8741(92)90057-X |
[50] |
JIA L, ZHAO Y, LIANG X J. Current evaluation of the millennium phytomedicine-ginseng (Ⅱ): collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine[J]. Current Medicinal Chemistry, 2009, 16(22): 2924-2942. DOI:10.2174/092986709788803204 |
[51] |
LEE M S, YABG E J, KIM J I, et al. Ginseng for cognitive function in Alzheimer's disease: asystematic review[J]. Journal of Alzheimer's Disease, 2009, 18(2): 339-344. DOI:10.3233/JAD-2009-1149 |
[52] |
LI N, ZHOU L, LI W, et al. Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer's disease mouse model: a metabolomics study[J]. Journal of Chromatography B, 2015, 985(11): 54-61. |
[53] |
YEONJU L, SEIKWAN O. Administration of red ginseng ameliorates memory decline in aged mice[J]. Journal of Ginseng Research, 2015, 39(3): 250-256. DOI:10.1016/j.jgr.2015.01.003 |
[54] |
OH J, LEE H, PARK D, et al. Ginseng and its active components ginsenosides inhibit adipogenesis in 3T3-L1 cells by regulating MMP-2 and MMP-9[J]. Evidence-Based Complementary and Alternative Medicine, 2012, 2012(9): 1-14. |
[55] |
BAN J Y, KANG S W, LEE J S, et al. Korean red ginseng protects against neuronal damage induced by transient focal ischemia in rats[J]. Experimental and therapeutic medicine, 2012, 3(4): 693-698. DOI:10.3892/etm.2012.449 |
[56] |
YAMABE N, SONG K I, LEE W, et al. Chemical and free radical-scavenging activity changes of ginsenoside re by maillard reaction and its possible use as a renoprotective agent[J]. Journal of Ginseng Research, 2012, 36(3): 256-262. DOI:10.5142/jgr.2012.36.2.256 |
[57] |
SUN J, JIAO C, MA Y, et al. Anti-ageing effect of red ginseng revealed by urinary metabonomics using RRLC-Q-TOF-MS[J]. Phytochemical Analysis, 2018. |
[58] |
JINGHUI S, SHU J, RUI J, et al. Metabolomics study of the therapeutic mechanism of Schisandra chinensis lignans on aging rats induced by D-galactose[J]. Clinical Interventions in Aging, 2018, 13(3): 829-841. |
[59] |
GREGORIO P, STEFANO D, STEFANIA S. Supplementation with resveratrol as, Polygonum cuspidatum, Sieb. et Zucc. extract induces changes in the excretion of urinary markers associated to aging in rats[J]. Fitoterapia, 2018, 129(5): 154-161. |
[60] |
FANFAN Z, YANFEN C, LI G, et al. Protective effects of Scutellaria baicalensis Georgi extract on D-galactose induced aging rats[J]. Metabolic Brain Disease, 2018, 3(1). DOI:10.1007/s11011-018-0229-z |