文章信息
- 连韵卓, 张琳琳, 程汝珍, 孙伟明, 徐家淳, 王凯
- LIAN Yunzhuo, ZHANG Linlin, CHENG Ruzhen, SUN Weiming, XU Jiachun, WANG Kai
- 中医药调控“APP代谢途径”治疗阿尔茨海默病的研究进展
- Advances in research of traditional Chinese medicine regulating "APP metabolic pathway" in the treatment of Alzheimer's disease
- 天津中医药大学学报, 2021, 40(6): 802-805
- Journal of Tianjin University of Traditional Chinese Medicine, 2021, 40(6): 802-805
- http://dx.doi.org/10.11656/j.issn.1673-9043.2021.06.25
-
文章历史
收稿日期: 2021-09-09
2. 天津中医药大学第二附属医院, 天津 300250
2. The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
阿尔茨海默病(AD)又称老年性痴呆,是常见的中枢神经系统退行性疾病,以学习记忆、严重的行为和认知功能障碍为主要特点。《2018年全球阿尔茨海默病报告》(World Alzheimer Report 2018)数据显示全世界有5 000万人患有痴呆症,并且每3秒钟就会出现一例新的痴呆病例[1]。AD的标志性病理特性是脑内老年斑的产生,而沉积的β淀粉样蛋白(β-amyloid peptide Aβ)则是老年斑的主要成分[2],它源于淀粉样前体蛋白APP的异常代谢[3],作为AD发病过程中的启动因素而起核心作用[4]。
APP是一种古老而又高度保守的跨膜蛋白,主要有非淀粉样和淀粉样两种代谢途径。研究发现,促进APP非淀粉样途径和抑制APP淀粉样途径,均可达到减少Aβ生成和沉积的目的,这对于改善AD导致的相关症状具有重要意义[5]。α-分泌酶和β-分泌酶对APP进行竞争性的首次剪切,可分别介导非淀粉样途径和淀粉样代谢途径[6]。中药可以通过调控APP代谢途径中不同分泌酶及相关因子的表达量从而实现改善AD的作用,文章对近年来的相关研究做一综述。
1 促进APP非淀粉样代谢途径非淀粉样途径中,APP经α-分泌酶剪切后生成可溶性的APP片段(sAPPα)[6]。研究显示,增加α-分泌酶表达可以增加sAPPα从神经元质膜上脱落[7],而sAPPα可以促进神经干细胞的增殖[8],并且有特异性的保护神经元免受Aβ毒性侵害的作用。α-分泌酶是一种膜结合蛋白水解酶,主要由金属蛋白酶解离素(ADAM)家族中ADAM9、ADAM10、ADAM17和ADAM19组成,其中ADAM10是神经元中占主导地位,它具有α分泌酶的生物学功能[9-10]。郭威等[11]研究发现中药女贞子主要成分齐墩果酸可通过增加侧脑室注射Aβ25-35的AD大鼠模型海马区ADAM10,sAPPα的表达量,实现神经元保护的作用。白藜芦醇是一种天然的植物抗毒素,广泛存在于葡萄、虎杖、花生、桑葚、决明子等植物中。Mohan Sathya等[12]研究发现白藜芦醇可明显降低Aβ的生成,其机制可能是通过激活ADAM10的转录表达,从而提高α-分泌酶的生成。姚柏春等[13]在研究中发现绞股蓝皂甙GPM可通过增加SDAT小鼠脑组织中sAPPα的表达量同时减少Aβ42表达量,从而改善该小鼠的学习记忆能力。
2 抑制APP淀粉样代谢途径 2.1 促进SORL1生成SORLA(带有A型重复序列的蛋白质相关受体)是一种多功能的1型膜受体,是液泡蛋白分选10蛋白(VPS10p)家族的成员,亦是APP的功能分类受体,在神经退行性疾病和精神疾病中发挥重要作用。SORL1基因编码SORLA受体,其基因中的几个单核苷酸多态性与AD的遗传有关[14]。SORL1蛋白可以使APP保存在高尔基体中,进而抑制APP淀粉样途径代谢,从而减少Aβ产生[15]。已有研究发现,SORL1表达降低不仅可导致Aβ生成增多[16],还可以直接损害脑细胞结构和功能导致Aβ的清除能力下降间接导致Aβ沉积[17-19]。二苯乙烯苷(TSG)是中药何首乌的主要水溶性成分,杨晓颖等[20]发现二苯乙烯苷(TSG)可通过APP/PS1双转基因阿尔茨海默病模型小鼠脑内APP及分SORL1 mRNA表达,从而促进SORL1的生成,抑制APP的淀粉样途径代谢,发挥减少神经元细胞凋亡,改善AD患者学习记忆能力的作用。
2.2 下调β-分泌酶(BACE1)表达量在淀粉样途径中,APP首先由BACE1切割生成Aβ的N末端和C-端残基C99,随后C99被γ-分泌酶切割形成Aβ[21]。另有研究显示Aβ的沉积也可以提高神经元中BACE1的水平[22-23],从而进一步增加Aβ生成,这一恶性循环会加重神经元凋亡,引发AD。王豫君等[24]研究发现灯盏细辛的药理活性成分灯盏乙素(Scu)能通过降低β-分泌酶的活性,阻止APP向淀粉样途径代谢生成Aβ,从而减轻Aβ沉积所带来的学习记忆能力损害。朱文娟等[25]发现经猫爪草提取物钩藤碱可以通过减少SAMP8小鼠脑内APP、BACE1及Aβ的含量,从而改善SAMP8小鼠的学习记忆能力。陈炜等[26]发现温脾通络开窍方能够改善老年性痴呆模型大鼠的学习记忆能力,其作用机制可能是通过降低BACE1的活性,抑制Aβ的生成,保护神经元。付文君等[27]发现通络醒脑泡腾片对多种痴呆模型鼠具有良好的疗效,进一步采用可自主分泌过量Aβ的SH-SY5Y-APP转基因细胞为模型,研究其机制表明通络醒脑泡腾片含药血清可通过降低SH-SY5Y-APP细胞中BACE1基因、蛋白水平、活性的表达抑制Aβ的生成。
2.3 下调γ-分泌酶表达量在淀粉样途径,γ-分泌酶作用于产生Aβ的最终切割过程。γ-分泌酶是一种天冬氨酰蛋白酶,它对C99进行多个位点的切割[28],生成长短不一的Aβ。在AD患者脑组织中分离到长度39~43个氨基酸不等的Aβ,其中Aβ42是主要形式,毒性最强,并且易聚集生成不溶性纤维进一步生成老年斑[29-30]。有研究显示γ-分泌酶是调节Aβ42/Aβ40比例的关键酶[31],提高γ-分泌酶的活性引起Aβ42/Aβ40比值的增加[32]。因此有效下调γ-分泌酶的表达量是减少Aβ沉积的有效途径。刘芳等[33]发现刺五加皂苷能够抑制胚鼠皮层神经细胞的内源性γ-内切酶的活性,进而减少Aβ生成。杨文育等[34]发现清心开窍方能够减少APP/PS1双转基因小鼠脑内GSK3α和APP的表达及Aβ的含量,并减少小鼠脑内皮质及海马区的老年斑数量。同时研究也证实活化的GSK3α可以增加γ分泌酶的活性[35],提示清心开窍方可能通过减少GSK3α间接抑制γ分泌酶,使Aβ生成减少。
3 小结与展望AD病理机制非常复杂,与遗传和性别等多方面因素有关。目前流行的假说有Aβ级联反应、tau蛋白过度磷酸化、胆碱能系统损伤、炎性反应、氧化应激等。假说中的不同机制也有可能相互联系,交错作用加速AD发病进程。遗憾的是AD发病的根本原因以及公认的有效治疗手段仍然无法确定。
在过去的20年中,通过调控APP代谢途径来减少Aβ生成一直是研究AD的焦点,由于不同途径中多种因子常相互作用影响与中药多靶向的特点不谋而合,可能使其在治疗AD这类复杂疾病中展现出特有的优势。通过以上综述可见,中医药能通过调控APP代谢途径中的不同因子来阻止Aβ生成,从而改善AD学习记忆能力减退,并取得一定的成效。但上述研究的关注点一直停留在Aβ沉积已经导致AD出现学习记忆能力减退的症状后中医药减缓其病程的作用,然而最新研究表明Aβ可能在AD临床表现出现之前很长时间就已形成,往往当相关症状被察觉的时候,神经元已经产生了不可逆转的损伤。如若我们能够结合“未病先防”的中医治未病思想,将干预的时间点提前至AD临床前的“沉默”阶段,或许能够更有效的降低发病率,甚至阻断AD临床阶段的发生,为治愈AD带来无限可能。
[1] |
ASS OCIATION A. 2018 Alzheimer's disease facts and figures[J]. Alzheimers & Dementia, 2018, 14(3): 367-429. |
[2] |
HARDY J, SELKOE D J. The amyloid hypoyhesis Alzheimer's disease: progress and problems on the road to the therapeutics[J]. Science, 2002, 297(5580): 353-356. DOI:10.1126/science.1072994 |
[3] |
KANG J, LEMARE H G, UNTERBECK A, et al. , The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor[J]. Nature, 1987, 325(6106): 733-736. DOI:10.1038/325733a0 |
[4] |
QIANG W, YAU W M, LU J X, et al. Structural variation in amyloid-β fibrils from Alzheimers disease clinical subtypes[J]. Nature, 2017, 541(7636): 217-221. DOI:10.1038/nature20814 |
[5] |
CHECLER F. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer's disease[J]. Journal of Neurochemistry, 2002, 65(4): 1431-1444. DOI:10.1046/j.1471-4159.1995.65041431.x |
[6] |
ANDREM R J, KELLETT K A, THINAKARAN G, et al. A greek tragedy: the growing complexity of Alzheimer amyloid precursor protein proteolysis[J]. Journal of Biological Chemistry, 2016, 291(37): 19235-19244. DOI:10.1074/jbc.R116.746032 |
[7] |
OHSAWA I, TAKAMURA C, MORIMOTO T, et al. Aminoterminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells[J]. European Journal of Neuroscience, 1999, 11(6): 1907-1913. DOI:10.1046/j.1460-9568.1999.00601.x |
[8] |
TACKENBERG C, NITSCH R M. The secreted APP ectodomain sAPPα, but not sAPPβ, protects neurons against Aβ oligomer-induced dendritic spine loss and increased tau phosphorylation[J]. Molecular Brain, 2019, 12(1): 12-27. DOI:10.1186/s13041-019-0433-8 |
[9] |
ANDERS A, GILBER S, GARTEN W, et al. Regulation of the α-secretase ADAM 10 by its prodomain and proprotein. FASEB[J]. 2001, 15(10): 1837-1839.
|
[10] |
KUHN P H, WANG H, DISLICH B, et al. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons[J]. The EMBO Journal, 2010, 29(17): 3020-3032. DOI:10.1038/emboj.2010.167 |
[11] |
郭威, 王凯, 孙伟明, 等. 齐墩果酸对阿尔茨海默病模型大鼠海马区ADAM10、sAPPα及凋亡相关蛋白bax和bcl-2表达的影响[J]. 时珍国医国药, 2017, 28(6): 1288-1289. GUO W, WANG K, SUN W M, et al. Effects of oleanolic acid on expression of ADAM10, sAPPα and apoptosis-related proteins Bax and Bcl-2 in hippocampus of Alzheimer's disease model rats[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(6): 1288-1289. |
[12] |
SATHYA M, MOORTHI P, PREMKUMAR P, et al. Resveratrol intervenes cholesterol-and isoprenoid-mediated amyloidogenic processing of abetapp in familial Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2017, 60(s1): S3-S23. DOI:10.3233/JAD-161034 |
[13] |
姚柏春, 敖云, 张戈, 等. 绞股蓝皂甙对痴呆小鼠学习记忆能力影响及机制[J]. 中国公共卫生, 2017, 33(12): 1708-1711. YAO B C, AO Y, ZHANG G, et al. Effect and mechanism of Gynostemma pentaphyllum Makino on learning and memory ability in dementia mice[J]. Chinese Journal of Public Health, 2017, 33(12): 1708-1711. DOI:10.11847/zgggws2017-33-12-09 |
[14] |
EGGERT S, THOMAS C, KINS S, et al. Trafficking in Alzheimer's disease: modulation of APP transport and processing by the transmembrane proteins LRP1, SorLA, SorCS1c, Sortilin, and calsyntenin[J]. Molecular Neurobiology, 2017, 55(7): 5809-5829. |
[15] |
MEHMEDBASIC A, CHRISTENSEN S K, NILSSON J, et al. SorLA complement-type repeat domains protect the amyloid precursor protein against processing[J]. Journal of Biological Chemistry, 2015, 290(6): 3359-3376. DOI:10.1074/jbc.M114.619940 |
[16] |
POON W W, BLURTON-JONES M, TU C H, et al. Betaamyloid impairs axonal BDNF retrograde trafficking[J]. Neurobiology of Aging, 2009, 32(5): 821-833. |
[17] |
FELSKY D, SZESZKO P, YU L, et al. The SORL1 gene and convergent neural risk for Alzheimer's disease across the human lifespan[J]. Molecular Psychiatry, 2014, 19(10): 1125-1132. DOI:10.1038/mp.2013.142 |
[18] |
SHEN J, ZHANG P, LIU H, et al. Modulation effect of the SORL1 gene on functional connectivity density in healthy young adults[J]. Brain Structure & Function, 2016, 221(8): 4103-4110. |
[19] |
林芳波, 刘鑫, 谢婧雯, 等. SORL1基因敲除小鼠可作为散发性阿尔茨海默病模型[J]. 南方医科大学学报, 2018, 38(3): 289-295. LIN F B, LIU X, XIE J W, et al. Verification of a sporadic Alzheimer disease model in SORL1 gene knockout mice[J]. Journal of Central South University, 2018, 38(3): 289-295. DOI:10.3969/j.issn.1673-4254.2018.03.08 |
[20] |
杨晓颖, 刘宁, 黄岑汉, 等. 二苯乙烯苷对APP/PS1双转基因阿尔茨海默病小鼠脑内β淀粉样前体蛋白及分拣蛋白相关受体1 mRNA表达的影响[J]. 中国老年学杂志, 2016, 36(3): 536-539. YANG X Y, LIU N, HUANG C H, et al. Effect of TSG on protein expression of APP in APP/PS1 double transgenic AD mice brain tissues[J]. Chinese Journal of Gerontology, 2016, 36(3): 536-539. DOI:10.3969/j.issn.1005-9202.2016.03.009 |
[21] |
KIMBERLY W T, LAVOIE M J, OSTASZEWSKI B L, et al. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2[J]. Proceedings of the National Academy of Sciences, 2003, 100(11): 6382-6387. DOI:10.1073/pnas.1037392100 |
[22] |
SADLEIR K R, EIMER W A, KAUFMAN R J, et al. Genetic inhibition of phosphorylation of the translation initiation factor eIF2α does not block Aβ-Dependent elevation of BACE1 and APP levels or reduce amyloid pathology in a mouse model of Alzheimer's disease[J]. Plos One, 2014, 9(7): e101643. DOI:10.1371/journal.pone.0101643 |
[23] |
SADLEIR K R, VASSAR R. Cdk5 protein inhibition and Aβ42 increase BACE1 protein level in primary neurons by a post-transcriptional mechanism: implications of CDK5 as a therapeutic target for Alzheimer disease[J]. Journal of Biological Chemistry, 2012, 287(10): 7224-7235. DOI:10.1074/jbc.M111.333914 |
[24] |
王豫君, 敖俊文, 郭莉莉, 等. 灯盏乙素对阿尔茨海默病小鼠脑组织β分泌酶途径相关蛋白表达的影响[J]. 山东医药, 2018, 58(26): 5-8. WANG Y J, AO J W, GUO L L, et al. Effect of scutellarin on expression of Aβ generation pathway-related protein in brain tissues of model mice with Alzheimer's disease[J]. Shandong Medical Journal, 2018, 58(26): 5-8. DOI:10.3969/j.issn.1002-266X.2018.26.002 |
[25] |
朱文娟, 程金生. 钩藤碱对痴呆模型小白鼠学习记忆的干预作用研究[J]. 中国现代医生, 2016, 54(6): 12-18. ZHU W J, CHENG J S. Intervention of rhynchophylline on the learning and memory abilities of adementia mouse model[J]. Modern Chinese Doctor, 2016, 54(6): 12-18. |
[26] |
陈炜, 王清碧, 杨惠丹, 等. 温脾通络开窍方对老年性痴呆模型大鼠记忆能力、β-分泌酶的影响[J]. 中医报, 2018, 33(6): 1045-1050. CHEN W, WANG Q B, YANG H D, et al. Effect of Wenpi Tongluo Kaiqiao Fang on memory ability and β-Secretase in Alzheimer'sdiseasemodelrats[J]. Journal of Chinese Medicine, 2018, 33(6): 1045-1050. |
[27] |
付文君, 代渊, 魏江平, 等. 基于转基因细胞模型研究通络醒脑泡腾片对Aβ代谢的影响[J]. 中国药理学通报, 2016, 32(11): 1571-1578. FU W J, DAI Y, WEI J P, et al. The effect of Tongluo Xingnao Effervescent Tablet on Aβ metabolism was studied based on transgenic cell model[J]. Chinese Pharmacological Bulletin, 2016, 32(11): 1571-1578. DOI:10.3969/j.issn.1001-1978.2016.11.018 |
[28] |
DEHURY B, TANG N, KEPP K P. Molecular dynamics of C99-bound gamma-secretase reveal two binding modes with distinct compactness, stability, and active-site retention: implications for Abeta production[J]. The Biochemical Journal, 2019, 476(7): 1173-1189. DOI:10.1042/BCJ20190023 |
[29] |
BURNOUF S, GORSKY M K, DOLS J, et al. Aβ43 is neurotoxic and primes aggregation of Aβ40 in vivo[J]. Acta Neuropathologica, 2015, 130(1): 35-47. DOI:10.1007/s00401-015-1419-y |
[30] |
WELANDER H, JENNY F, GRAFF C, et al. Aβ43 is more frequent than Aβ40 in amyloid plaque cores from Alzheimer disease brains[J]. Journal of Neurochemistry, 2009, 110(2): 697-706. DOI:10.1111/j.1471-4159.2009.06170.x |
[31] |
SHENG B, GONG K, NIU Y, et al. Inhibition of gammasecretaae activity reduces a beta production reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: implications for the treatment of Alzheimer's disease[J]. Free Radical Biology and Medicine, 2009, 46(10): 1362-1375. DOI:10.1016/j.freeradbiomed.2009.02.018 |
[32] |
KRETNER B, FUKUMORI A, GUTSMIEDL A, et al. Attenuated Abeta42 responses to low potency gamma-secretase modulators can be overcome for many pathogenic presenilin mutants by second-generation compounds[J]. Journal of Biological Chemistry, 2011, 286(17): 15240-15251. DOI:10.1074/jbc.M110.213587 |
[33] |
刘芳, 李净洋, 邱烨, 等. 刺五加皂苷对淀粉样前体蛋白APP酶解通路的影响[J]. 中国实验诊断学, 2017, 21(12): 2173-2176. LIU F, LI J Y, QIU Y, et al. Effect of Acanthopannx Senticousus Saponins on procesing pathway of amyloid precursor protein[J]. Chinese Journal of Laboratory, 2017, 21(12): 2173-2176. DOI:10.3969/j.issn.1007-4287.2017.12.042 |
[34] |
杨文育, 李燕, 林坚炜, 等. 清心开窍方对APP/PS1双转基因小鼠海马区AKT/GSK3α/βapp/Aβ表达的影响[J]. 中华中医药学刊, 2018, 36(6): 1431-1434. YANG W Y, LI Y, LIN J W, et al. Effect of Qingxin Kaiqiao Recipe on expressions of AKT, GSK3α, βAPP and Aβ in hippocampus of APP/PS1 transgenic mice[J]. Chinese Archives of Traditional Chinese Medicine, 2018, 36(6): 1431-1434. |
[35] |
MORRIS J K, BURNS J M. Insulin: an emerging treatment for Alzheimer's disease dementia[J]. Current Neurology and Neuroscience Reports, 2012, 12(5): 520-527. DOI:10.1007/s11910-012-0297-0 |