文章信息
- 郑玉玲, 李纳纳, 冯京, 张浩, 丁辉, 宋新波
- ZHENG Yuling, LI Nana, FENG Jing, ZHANG Hao, DING Hui, SONG Xinbo
- 肉苁蓉苯乙醇苷类成分抗骨质疏松作用机制研究进展
- Research progress on anti-osteoporotic mechanism of phenethanol glycosides of Cistanche deserticola
- 天津中医药大学学报, 2022, 41(2): 265-272
- Journal of Tianjin University of Traditional Chinese Medicine, 2022, 41(2): 265-272
- http://dx.doi.org/10.11656/j.issn.1673-9043.2022.02.27
-
文章历史
收稿日期: 2021-12-05
2. 天津红日药业股份有限公司, 天津 301617
2. Tianjin Hongri Pharmaceutical Co. Ltd., Tianjin 301617, China
骨质疏松症(OP)是一种以骨密度降低、骨强度下降、骨组织损伤、骨量和骨中矿物质流失进而骨脆性增高及易发生骨折为病理特点的全身性骨代谢疾病[1],多见于老年人,已成为全世界面临的健康问题,引起世界人民的广泛关注[2]。临床上主要使用具有促进骨的形成,抑制骨的吸收以及兼具双重作用的药物来防治骨质疏松症。西医上主要通过降钙素类[3]、双磷酸盐类[4]、雌激素替代治疗[5]、选择性雌激素受体调节剂[6]、狄诺塞麦[7]、雷奈酸锶[8]等来治疗骨质疏松症,这些药物存在安全性问题,长期使用这些药物会引起不同程度的心脑血管疾病、静脉血栓栓塞、乳腺癌等不良反应[9]。
肉苁蓉(Cistanche deserticola Y.C.Ma)是中国传统补益类中药材之一,又称大芸、苁蓉,为列当科植物肉苁蓉或管花肉苁蓉Cistanche tubulosa(Schenk)Wight的干燥带鳞叶的肉质茎[10],始载于《神农百草经》,列为上品[11],性甘、咸、温,归肾经、大肠经,素有“沙漠人参”的美誉。肉苁蓉是多年生寄生性草本植物,其主要寄生在梭梭属、怪柳属等沙漠、荒漠固沙植物的根部。目前,全世界约有22个品种,主要分布在欧亚的温暖干燥地区,中国有5种肉苁蓉且主要分布在内蒙古、新疆、青海、宁夏等西北荒漠、沙漠地区[12]。自古肉苁蓉便是药食两用的植物,大量文献资料表明,肉苁蓉具有抗衰老[13]、抗炎[14]、抗氧化[15]、抗骨质疏松[16]、抗抑郁[17]、润肠通便[18]等生物学效应,因而具有极高的经济价值[19]。中医理论认为,发生骨质疏松症的主要原因是肝、脾、肾三脏虚损[20]。肉苁蓉具有补肾阳、益精血之功效,现代研究证明肉苁蓉具有抗骨质疏松作用[16, 21-22],可用于骨质疏松症的治疗,苯乙醇苷类成分是肉苁蓉的主要活性成分之一,《中华人民共和国药典》明确规定苯乙醇苷类代表性成分松果菊苷和毛蕊花糖苷为肉苁蓉的质量控制成分[10]。松果菊苷的绝对生物利用度(F,%)为0.83%[23],毛蕊花糖苷的口服生物利用度(F,%)为0.12%[24],这与肉苁蓉苯乙醇苷类成分的药物活性相矛盾。天然药物通常具有系统前广泛代谢的特点,发挥整体药效作用的可能是其活性代谢产物[25],因而本文对其体内外代谢转化过程及代谢产物进行分析,进而确定其治疗骨质疏松症的活性成分、药效学及作用机制。
1 肉苁蓉中苯乙醇苷类成分体内外代谢研究 1.1 肉苁蓉中苯乙醇苷类成分体内代谢研究Li等[26]利用UHPLC-Q-TOF-MS对口服肉苁蓉水提物的大鼠的尿液、粪便和血清进行研究,初步鉴定了肉苁蓉71个代谢物,其中原型组分25个,代谢物46个,研究表明苯乙醇苷类主要在大鼠的胃肠道中代谢。Cui等[27]给大鼠口服200 mg/kg的松果菊苷和毛蕊花糖苷,收集其血浆、胆汁、粪便和尿液,采用UHPLC-ESI-Q-TOF-MS对收集到的样品进行处理,发现松果菊苷和毛蕊花糖苷具有明显的肝首过效应,在血浆、粪便和尿液中的代谢情况相似,主要通过重排、水解、还原、脱羟基、甲基化、硫酸化和葡萄糖醛酸化等代谢途径,生成咖啡酸、羟基酪醇等18种代谢产物,且发现咖啡酸、羟基酪醇均与松果菊苷、毛蕊花糖苷具有相似的生物活性。雷厉等[28]收集灌胃苯乙醇总苷的狗的粪便,并利用HPLC对其进行分离,得到松果菊苷、毛蕊花糖苷、异类叶升麻苷和2’-乙酰基类叶升麻苷,结果表明松果菊苷在大肠中经过脱糖反应转化为毛蕊花糖苷。
1.2 肉苁蓉中苯乙醇苷类成分体外代谢研究钱浩等[29]将松果菊苷与人肠道菌群一起在体外厌氧条件下孵育不同时间,采用HPLC-ESI-MS对松果菊苷及其代谢物进行检测,结果发现松果菊苷在离体条件下被人肠道菌群代谢为毛蕊花糖苷、异毛蕊花糖苷和chamaedroside。王昕蕾等[30]研究肉苁蓉总苷在人工胃液及肠液中的代谢途径,采用UHPLC-ESI-Q-TOF-MS对其成分进行分析鉴定。结果发现人工胃液中有14个原型成分、55个代谢成分,人工肠液中有4个原型成分、86个代谢成分,肉苁蓉总苷主要是通过去甲基化、甲基化、去羟基化、羟基化、乙酰基化、硫酸化、葡萄糖醛酸化等途径在人工胃液和肠液中发生代谢。李瑒等[31]通过对肉苁蓉水煎液在大鼠体内代谢研究和人源体外胃肠道代谢研究,发现苯乙醇苷类成分主要代谢为羟基酪醇、咖啡酸且咖啡酸在肠道菌群中被继续代谢为3-羟基苯丙酸,环烯醚萜类代谢为其苷元。
通过对肉苁蓉苯乙醇苷类成分体内外代谢的研究,发现肉苁蓉苯乙醇苷类成分主要通过重排、水解、还原、甲基化、去甲基化、羟基化、去羟基化、乙酰基化、硫酸化和葡萄糖醛酸化等途径代谢成羟基酪醇、咖啡酸、异毛蕊花糖苷、2′-乙酰基类叶升麻苷和chamaedroside等主要产物,其中松果菊苷[32]、毛蕊花糖苷[33]、咖啡酸[34]及羟基酪醇[35]等具有较好的治疗骨质疏松症的作用。
2 肉苁蓉中苯乙醇苷类成分抗骨质疏松药效学研究徐珊珊[32]通过研究松果菊苷调节T淋巴细胞对成骨细胞的影响,发现松果菊苷干预的T淋巴细胞培养上清(10%)干预处理成骨细胞72 h,对成骨细胞的增殖以及骨保护蛋白(OPG)mRNA的表达具有显著促进作用,同时能够显著抑制受体活化因子配体(RANKL)mRNA的表达,起到治疗骨质疏松症的作用。陈微娜[33]等研究毛蕊花糖苷对新生大鼠体外培养成骨细胞的增殖与分化作用,发现1×10-7~1×10-9 mol/L的毛蕊花糖苷能够显著促进新生大鼠颅骨成骨细胞的增殖,且终浓度为1×10-7 mol/L的毛蕊花糖苷在作用新生大鼠颅骨成骨细胞72 h后能够显著提高其碱性磷酸酶的活性(P < 0.05),对治疗骨质疏松症有一定的作用。石其福[34]研究咖啡酸对破骨细胞形成与分化的影响,发现咖啡酸可直接作用于破骨前驱细胞和破骨细胞,并对其形成与分化呈浓度依赖性抑制。研究发现羟基酪醇可增强成骨细胞的增殖及分化,还可减少破骨细胞样细胞的形成,对治疗骨质疏松症有一定的疗效[35]。
3 肉苁蓉中苯乙醇苷类成分抗骨质疏松作用机制研究网络药理学分析发现肉苁蓉中有多种成分具有较好的抗骨质疏松作用,如松果菊苷、益母草碱、京尼平酸、毛蕊花糖苷、去咖啡酰基类叶升麻苷等,主要作用于成骨细胞特异性转录因子Runt相关转录因子2(RUNX2)、白细胞介素6(IL-6)、肿瘤坏死因子(TNF)、骨生长蛋白因子(BGP)、成骨细胞骨桥蛋白(OPN)、活性氧簇(ROS)、丝裂源活化蛋白激酶(MAPK)、FMS样酪氨酸激酶3(FLT3)、泛素特异性肽酶10(USP10)等靶标,发挥抗骨质疏松的作用[36]。松果菊苷和毛蕊花糖苷是肉苁蓉中的代表性成分,含量较高、作用较强,主要通过以下几个作用机制抗骨质疏松。
3.1 雌激素作用雌激素水平下降,会导致骨密度降低、骨量减少,造成骨质疏松[37]。补肾阳中药通过作用于下丘脑—垂体—性腺调节激素水平或直接发挥激素样作用调节卵巢功能来治疗雌激素缺乏造成的骨质疏松症[38]。王琳琳等[39]采用荧光素酶报告质粒法研究肉苁蓉中松果菊苷和毛蕊花糖苷的植物雌激素作用,结果发现松果菊苷、毛蕊花糖苷可以与雌激素共同拮抗雌激素对雌激素应答元件(ERE)的上调作用,从而表现出植物雌激素活性。
3.2 调节Ca、P代谢平衡钙、磷是机体必须微量元素,是骨组织的重要组成部分,参与并维持机体正常生理功能[40]。骨是调控钙磷代谢的主要靶器官之一,与降钙素[41]、甲状旁腺素[42]等共同维持机体内钙磷代谢平衡,钙磷代谢紊乱是骨质疏松症的病理机制之一。任何甲状腺功能障碍均可能中断骨组织的生长,研究证明羟基酪醇可以改善甲状腺细胞功能,在骨形成与吸收过程中使钙维持在稳态水平,从而改善骨组织的结构与微结构,起到抗骨质疏松的作用[43]。李彩虹等[44]通过研究发现松果菊苷可显著促进成骨细胞OPN基因的表达,同时对OPN蛋白的分泌有促进的趋势。骨桥蛋白(OPN)作为成骨细胞的表型之一,在骨基质的矿化和吸收过程中起重要作用并能调节成骨细胞和破骨细胞的功能,达到治疗骨质疏松症的效果[45]。羟基酪醇以剂量依赖的方式刺激钙的沉积,随着钙沉积的增加来抑制破骨细胞的形成,对骨质疏松症有一定的治疗作用[46]。
3.3 抗氧化应激超氧阴离子(O2-)、过氧化氢(H2O2)及羟自由基(·OH)等构成机体95%的活性氧簇(ROS)[47],ROS通过诱导骨细胞凋亡、抑制骨质矿化和骨形成、增强骨吸收等破坏骨重建过程,导致骨质疏松症[48]。松果菊苷与毛蕊花糖苷中的苯乙醇基和苯丙烯基上均带有邻位酚羟基[49],这种结构易与氧自由基结合,降低氧化应激对机体的损伤[50]。咖啡酸不仅能够清除体内超氧阴离子(O2-),还能够抑制氧自由基的形成,在机体内具有一定的抗氧化作用[51]。羟基酪醇可降低成骨细胞MC3T3-E1细胞中H2O2的水平[45]。
3.4 RANK-RANKL-OPG信号通路核因子-κB受体活化因子(RANK)-核因子-κB受体活化因子配体(RANKL)-骨保护蛋白(OPG)信号转录系统[52]是调控骨形成与骨吸收的关键耦联系统,是骨质疏松症的病理机制之一[53]。RANKL是RANK的配体,两者特异性结合,可以促进破骨细胞的分化,增加骨吸收[54]。OPG是一种分泌型糖蛋白,可竞争性与RANKL结合,有效阻断RANK与RANKL的结合,抑制骨吸收[55]。松果菊苷可以通过提高OPG/RANKL的比值来安全有效的预防绝经后骨质疏松症的骨丢失,对治疗骨质疏松症有一定的疗效[56]。毛蕊花糖苷通过下调RANK和RANKL的表达水平,抑制骨吸收,起到预防骨质疏松症的效果[57]。咖啡酸[58]能够上调OPG/RANKL系统改善骨重建,提高成骨细胞分化成熟的能力,对骨质疏松症有一定的治疗作用。Zhang等[16]研究肉苁蓉RANKL/RANK/TRAF6介导的信号通路对去卵巢大鼠骨代谢的抗骨质疏松活性,结果发现肉苁蓉提取物可以使IKK β、NF-κ β、NFAT2的表达下调及c-Fos的表达上调,表明肉苁蓉提取物通过阻止RANKL/RANK/TRAF诱导的NF-κβ活化和PI3K/AKT失活,以及c-Fos刺激和NFAT2抑制,达到抑制破骨细胞分化和骨吸收的目的,对去卵巢骨质疏松大鼠有一定的治疗效果。
3.5 BMP2-Smad-Runx2信号通路骨形态发生蛋白(BMPs)属于转化生长因子β(TGF-β)超家族,可促进骨骼生长发育[59]。BMP2是BMPs的一种亚型,参与调节成骨细胞的分化[60]。Smads蛋白家族是TGF-β细胞内具有信号传导作用的唯一转导分子,能够与其他转录分子结合后将应答信号由细胞膜转移至细胞核进行调控[61]。Runx 2(又称核心结合因子a1,Cbfa1),研究证明该因子能够通过直接或者间接调节成骨细胞相关基因来调节成骨细胞的分化[62]。BMP2-Smad-Runx2通路[63]的调控机制是BMP2与其受体结合后激活Smads复合物,Smads复合物上调成骨细胞和软骨细胞分化的Runx2,从而促进成骨细胞增殖或成骨分化,能够治疗骨质疏松症[64]。松果菊苷通过上调BMP2与Smad4的表达水平而激活BMP/Smad信号通路,从而促进大鼠成骨细胞的增殖[65]。田原[66]研究发现松果菊苷含药血清能够显著上调骨髓间充质干细胞中BMP2、Smad1/5/8、ZHX3、Runx2和OSXmRNA和蛋白表达水平,提示骨髓间充质干细胞通过BMP2-Smad-Runx2通路诱导为成骨细胞。
3.6 MAPK-ERK信号通路丝裂原活化蛋白激酶(MAPK)信号通路[67],包括ERK、p38、JNK和ERK5等四个亚族,能够介导细胞外信号向细胞内靶点的传递,从而调节细胞生长、发育、分化及凋亡等过程[68]。研究发现松果菊苷能够上调ERK、p38和JUNK的磷酸化水平[69]从而激活MAPK/ERK信号通路,进而促进大鼠成骨细胞的分化,对治疗骨质疏松症有一定作用[65]。
3.7 FLT3-USP10信号通路FMS样酪氨酸激酶3(FLT3)是一种跨膜酪氨酸酶受体,其被激活后能够刺激细胞的增殖[70]。研究证实FLT3能够与巨噬细胞集落刺激因子(M-CSF)结合,联合RANKL诱导破骨细胞的分化,对骨质疏松症有一定的治疗作用[71]。泛素特异性肽酶(USP)10属于泛素特异性蛋白酶(USP)家族,研究证明USP10不仅是FLT3维持稳定所需的关键去泛素化酶,而且通过抑制USP10的活性能够诱导FLT3蛋白的降解[72]。毛蕊花糖苷能够抑制糖皮质激素诱导的骨质疏松大鼠USP10/FLT3通路的活性,下调USP10/FLT3蛋白表达水平来改善大鼠骨质疏松[73]。
4 总结与展望肉苁蓉作为中国传统补益类中药之一,其生物活性广泛,具有极高的药用及食用价值。上述对肉苁蓉苯乙醇苷类成分体内外代谢研究及抗骨质疏松的药效学与作用机制等进行了总结,阐明了肉苁蓉苯乙醇苷类成分防治骨质疏松症的有效成分及作用机制,为女性绝经后雌激素分泌减少及各种身体机能下降等导致的骨质疏松症的防治奠定了理论基础。随着科学技术的不断发展及人们对肉苁蓉认识的不断加深,发现不论是基于中医的“肾主骨”理论,还是现代的科学研究证明,都能说明肉苁蓉具有较好的抗骨质疏松作用,但肉苁蓉其他成分的体内外代谢转化研究及抗骨质疏松作用机制研究尚不完善,今后可对其进行进一步研究。以期有更多肉苁蓉抗骨质疏松作用的药物及保健食品问世,从而使肉苁蓉这一宝贵资源得到充分利用和有效发展。
[1] |
LI Z Z, LI J B, ZHAO W L, et al. Potential antiosteoporotic effect of Ginkgo biloba extract via regulation of SIRT1-NF-kB signaling pathway[J]. Journal of King Saud University-Science, 2020, 32(4): 2513-2519. DOI:10.1016/j.jksus.2020.04.011 |
[2] |
黄骁燕, 夏秦. 老年人骨质疏松症的防治[J]. 医学新知杂志, 2019, 29(3): 239-240. HUANG X Y, XIA Q. Prevention and treatment of senile osteoporosis[J]. Journal of New Medicine, 2019, 29(3): 239-240. |
[3] |
WEI J S, WANG J, GONG Y, et al. Effectiveness of com-bined salmon calcitonin and aspirin therapy for osteoporosis in ovariectomized rats[J]. Molecular Medicine Reports, 2015, 12(2): 1717-1726. DOI:10.3892/mmr.2015.3637 |
[4] |
DENG J, FENG Z P, LI Y, et al. Efficacy and safety of re-combinant human parathyroid hormone (1-34) are similar to those of alendronate in the treatment of postmenopausal os-teoporosis[J]. Medicine, 2018, 97(47): e13341. DOI:10.1097/MD.0000000000013341 |
[5] |
ZHANG Y G, HUA F, DING K, et al. Angiogenesis changes in ovariectomized rats with osteoporosis treated with estro-gen replacement therapy[J]. BioMed Research International, 2019, 2019: 1283717. |
[6] |
GENNARI L, MERLOTTI D, NUTI R. Selective estrogen receptor modulator (SERM) for the treatment of osteoporosis in postmenopausal women: Focus on lasofoxifene[J]. Clinical Interventions in Aging, 2010, 5(5): 19-29. |
[7] |
ZHU Y L, HUANG Z L, WANG Y, et al. The efficacy and safety of denosumab in postmenopausal women with osteo-porosis previously treated with bisphosphonates: a review[J]. Journal of Orthopaedic Translation, 2020, 22: 7-13. DOI:10.1016/j.jot.2019.08.004 |
[8] |
MORABITO N, CATALANO A, GAUDIO A, et al. Effects of strontium ranelate on bone mass and bone turnover in wom-en with thalassemia major-related osteoporosis[J]. Journal of Bone and Mineral Metabolism, 2016, 34(5): 540-546. DOI:10.1007/s00774-015-0689-8 |
[9] |
李章青, 向楠, 周广文, 等. 骨质疏松症的西医研究进展[J]. 湖北民族大学学报(医学版), 2020, 37(1): 79-81. LI Z Q, XIANG N, ZHOU G W, et al. Western medicine research progress on osteoporosis[J]. Journal of Hubei Minzu University (Medical Edition), 2020, 37(1): 79-81. |
[10] |
国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2015: 135-136. National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China[M]. Beijing: China Medical Sci-ence and Technology Press, 2015: 135-136. |
[11] |
张效东. 《神农本草经》药物札记[J]. 山东中医药大学学报, 2011, 35(4): 306-308. ZHANG X D. Notes on Shennong' s Materia Medica medi-cine[J]. Journal of Shandong University of Traditional Chi-nese Medicine, 2011, 35(4): 306-308. |
[12] |
陈志豪, 朱效兵, 夏美茹, 等. 肉苁蓉的营养保健特性及加工应用[J]. 现代食品, 2019(5): 123-126, 130. CHEN Z H, ZHU X B, XIA M R, et al. The nutrition and health properties and application of Cistanche deserticola[J]. Modern Food, 2019(5): 123-126, 130. |
[13] |
WANG N Q, JI S Z, ZHANG H, et al. Herba cistanches: anti-aging[J]. Aging and Disease, 2017, 8(6): 740-759. DOI:10.14336/AD.2017.0720 |
[14] |
WANG Y H, XUAN Z H, TIAN S, et al. Echinacoside pro-tects against 6-hydroxydopamine-induced mitochondrial dysfunction and inflammatory responses in PC12 cells via reducing ROS production[J]. Evidence-Based Complemen-tary and Alternative Medicine: ECAM, 2015, 2015: 189239. |
[15] |
PENG S, LI P Y, LIU P R, et al. Cistanches alleviates sevoflurane-induced cognitive dysfunction by regulating PPAR-γ-dependent antioxidant and anti-inflammatory in rats[J]. Journal of Cellular and Molecular Medicine, 2020, 24(2): 1345-1359. DOI:10.1111/jcmm.14807 |
[16] |
ZHANG B, YANG L L, DING S Q, et al. Anti-osteoporotic activity of an edible traditional Chinese medicine Cistanche deserticola on bone metabolism of ovariectomized rats through RANKL/RANK/TRAF6-mediated signaling path-ways[J]. Frontiers in Pharmacology, 2019, 10: 1412. DOI:10.3389/fphar.2019.01412 |
[17] |
WANG D F, WANG H Z, GU L. The antidepressant and cognitive improvement activities of the traditional Chinese herb cistanche[J]. Evidence-Based Complementary and Al-ternative Medicine, 2017, 2017: 3925903. |
[18] |
YAN S, YUE Y Z, WANG X P, et al. Aqueous extracts of herba cistanche promoted intestinal motility in loperamide-induced constipation rats by ameliorating the interstitial cells of cajal[J]. Evidence-Based Complementary and Alter-native Medicine, 2017, 2017: 6236904. |
[19] |
彭芳, 徐荣, 徐常青, 等. 肉苁蓉药用及其食疗历史考证[J]. 中国药学杂志, 2017, 52(5): 377-383. PENG F, XU R, XU C Q, et al. Ancient literature textual research on medicinal and edible history of cistanches herba[J]. Chinese Pharmaceutical Journal, 2017, 52(5): 377-383. |
[20] |
苏积亮, 谢兴文, 李鼎鹏, 等. 基于中医肝、脾、肾三脏探讨肠道微生态与骨质疏松症关系[J]. 中国中医药信息杂志, 2020, 27(7): 16-18. SU J L, XIE X W, LI D P, et al. Discussion on relationship between intestinal microecology and osteoporosis based on liver, spleen and kidney in TCM[J]. Chinese Journal of In-formation on Traditional Chinese Medicine, 2020, 27(7): 16-18. |
[21] |
LI T M, HUANG H C, SU C M, et al. Cistanche deserticola extract increases bone formation in osteoblasts[J]. Journal of Pharmacy and Pharmacology, 2012, 64(6): 897-907. DOI:10.1111/j.2042-7158.2012.01483.x |
[22] |
LI F, YANG X L, YANG Y N, et al. Antiosteoporotic activity of echinacoside in ovariectomized rats[J]. Phytomedicine, 2013, 20(6): 549-557. DOI:10.1016/j.phymed.2013.01.001 |
[23] |
JIA C Q, SHI H M, WU X M, et al. Determination of echina-coside in rat serum by reversed-phase high-performance liquid chromatography with ultraviolet detection and its ap-plication to pharmacokinetics and bioavailability[J]. Journal of Chromatography B, 2006, 844(2): 308-313. DOI:10.1016/j.jchromb.2006.07.040 |
[24] |
WU Y T, LIN L C, SUNG J S, et al. Determination of acteo-side in Cistanche deserticola and Boschniakia rossica and its pharmacokinetics in freely-moving rats using LC-MS/MS[J]. Journal of Chromatography B, 2006, 844(1): 89-95. DOI:10.1016/j.jchromb.2006.07.011 |
[25] |
戴亮, 郝海平, 汪玉馨, 等. 松果菊苷药动/药效研究进展与思考[J]. 中国临床药理学与治疗学, 2010, 15(3): 342-349. DAI L, HAO H P, WANG Y X, et al. Progress and thoughts on pharmacodynamics and pharmacokinetics of echinaco-side[J]. Chinese Journal of Clinical Pharmacology and Ther-apeutics, 2010, 15(3): 342-349. |
[26] |
LI Y, PENG Y, WANG M Y, et al. Rapid screening and identification of the differences between metabolites of Cistanche deserticola and C. tubulosa water extract in rats by UPLC-Q-TOF-MS combined pattern recognition analysis[J]. Journal of Pharmaceutical and Biomedical Anal-ysis, 2016, 131: 364-372. DOI:10.1016/j.jpba.2016.09.018 |
[27] |
CUI Q L, PAN Y N, BAI X W, et al. Systematic characteri-zation of the metabolites of echinacoside and acteoside from Cistanche tubulosa in rat plasma, bile, urine and feces based on UPLC-ESI-Q-TOF-MS[J]. Biomedical Chromatog-raphy: BMC, 2016, 30(9): 1406-1415. DOI:10.1002/bmc.3698 |
[28] |
雷厉, 宋志宏, 李寅增, 等. 管花肉苁蓉苯乙醇总苷在狗胃肠道内的生物转化[J]. 药学学报, 2001, 36(6): 432-435. LEI L, SONG Z H, LI Y Z, et al. Metabolic regulation of phenylethanoid glycosides from erba cistanches in dogs' gastrointestine[J]. Acta Pharmaceutica Sinica, 2001, 36(6): 432-435. DOI:10.3321/j.issn:0513-4870.2001.06.008 |
[29] |
钱浩, 杨振亚, 刘丹丹, 等. 人肠道菌群对松果菊苷体外代谢转化的研究[J]. 华西药学杂志, 2017, 32(6): 641-643. QIAN H, YANG Z Y, LIU D D, et al. Study on the metabolism of echinacoside by human intestinal bacteria in vitro[J]. West China Journal of Pharmaceutical Sciences, 2017, 32(6): 641-643. |
[30] |
王昕蕾, 刘博男, 张蒙蒙, 等. 肉苁蓉总苷在人工胃、肠液中的代谢转化研究[J]. 中国药房, 2020, 31(1): 53-61. WANG X L, LIU B N, ZHANG M M, et al. Study on metabolic transformation of total glycosides of Cistanche deserticola in artificial gastric and intestinal juice[J]. China Pharmacy, 2020, 31(1): 53-61. |
[31] |
李瑒. 基于胃肠道代谢和"肠-脑"轴管花肉苁蓉抗抑郁物质基础及机制研究[D]. 上海: 上海交通大学, 2018. LI Y. Antidepressant-like effects and the substances of Cis-tanche tubulosa stems based on the "gut-brain" axis and gastrointestinal metabolism analysis[D]. Shanghai: Shanghai Jiao Tong University, 2018. |
[32] |
徐姗姗. 肉苁蓉及松果菊苷调节T淋巴细胞对成骨细胞的影响研究[D]. 广州: 广州中医药大学, 2019. XU S S. Effect of Cistanche herba and echinacoside on the regulation of T lymphocytes on osteoblasts[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2019. |
[33] |
陈微娜, 李飞, 朱盼盼, 等. 毛蕊花糖苷对新生大鼠体外培养成骨细胞增殖与分化作用研究[J]. 海峡药学, 2012, 24(4): 23-24. CHEN W N, LI F, ZHU P P, et al. Effects of acteoside on proliferation and differentiation in osteoblasts in vitro[J]. Strait Pharmaceutical Journal, 2012, 24(4): 23-24. DOI:10.3969/j.issn.1006-3765.2012.04.007 |
[34] |
石其福. 咖啡酸对破骨细胞形成及分化的影响[D]. 石家庄: 河北医科大学, 2010. SHI Q F. The effect of caffeic acid on formation anddiffer-entiation of osteoclast[D]. Shijiazhuang: Hebei Medical Uni-versity, 2010. |
[35] |
CHIN K Y, IMA-NIRWANA S. Olives and bone: a green osteoporosis prevention option[J]. International Journal of Environmental Research and Public Health, 2016, 13(8): 755. DOI:10.3390/ijerph13080755 |
[36] |
王延涛, 杨智华, 陈怡, 等. 肉苁蓉治疗骨质疏松作用机制的网络药理学研究[J]. 中国药房, 2019, 30(5): 645-651. WANG Y T, YANG Z H, CHEN Y, et al. Network pharma-cology exploration of the mechanism of Cistanche deserticola in the treatment of osteoporosis[J]. China Pharmacy, 2019, 30(5): 645-651. |
[37] |
SUZUKI T, NAKAMURA Y, KATO H. Efficacy of 4-year denosumab treatment alone or in combination with teri-paratide in Japanese postmenopausal osteoporotic women[J]. Modern Rheumatology, 2019, 29(4): 676-681. DOI:10.1080/14397595.2018.1524997 |
[38] |
魏珍珍, 苗明三. 补肾阳中药治疗围绝经期综合征特点分析[J]. 中医学报, 2013, 28(11): 1688-1691. WEI Z Z, MIAO M S. Characteristic analysis of reinforcing kidney traditional Chinese medicine in the treatment of per-imenopausal syndrome[J]. China Journal of Chinese Medicine, 2013, 28(11): 1688-1691. |
[39] |
王琳琳, 李薇, 宋新波, 等. 肉苁蓉中松果菊苷和毛蕊花糖苷的植物雌激素活性研究[J]. 天然产物研究与开发, 2015, 27(3): 377-380. WANG L L, LI W, SONG X B, et al. Study on estrogenic ef-fects of echinacoside and actsoside from herba Cistanche[J]. Natural Product Research and Development, 2015, 27(3): 377-380. |
[40] |
陈赛楠, 吴华嵩, 程佑民, 等. 续苓健骨方对去卵巢骨质疏松模型大鼠血液钙磷代谢的影响[J]. 中国骨质疏松杂志, 2019, 25(4): 528-532. CHEN S N, WU H S, CHENG Y M, et al. The effect of Xul-ing Jiangu Prescription on blood calcium and phosphorus metabolism in ovariectomized osteoporosis model rats[J]. Chinese Journal of Osteoporosis, 2019, 25(4): 528-532. DOI:10.3969/j.issn.1006-7108.2019.04.021 |
[41] |
KOVACS C S. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phos-photropic hormones[J]. Physiological Reviews, 2014, 94(4): 1143-1218. DOI:10.1152/physrev.00014.2014 |
[42] |
DELITALA A P, SCUTERI A, DORIA C. Thyroid hormone diseases and osteoporosis[J]. Journal of Clinical Medicine, 2020, 9(4): 1034. DOI:10.3390/jcm9041034 |
[43] |
MAHMOUDI A, GHORBEL H, FEKI I, et al. Oleuropein and hydroxytyrosol protect rats' pups against bisphenol a induced hypothyroidism[J]. Biomedicine & Pharmacotherapy, 2018, 103: 1115-1126. |
[44] |
李彩虹, 刘钟杰, 郑世军, 等. 松果菊苷对大鼠成骨细胞胃桥素基因和蛋白质的影响[J]. 中国畜牧兽医, 2013, 40(4): 50-55. LI C H, LIU Z J, ZHENG S J, et al. Effect of echinacoside on the expression of the OPN mRNA and protein in rat os-teoblasts in vitro[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(4): 50-55. DOI:10.3969/j.issn.1671-7236.2013.04.011 |
[45] |
SI J Y, WANG C W, ZHANG D H, et al. Osteopontin in bone metabolism and bone diseases[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2020, 26: e919159. |
[46] |
HAGIWARA K, GOTO T, ARAKI M, et al. Olive polyphe-nol hydroxytyrosol prevents bone loss[J]. European Journal of Pharmacology, 2011, 662(1/2/3): 78-84. |
[47] |
彭涛, 李爱国, 何培亮. 绝经后骨质疏松与氧化应激相关研究进展[J]. 中外医学研究, 2020, 18(10): 186-188. PENG T, LI A G, HE P L. Research progress on the rela-tionship between postmenopausal osteoporosis and oxidative stress[J]. Chinese and Foreign Medical Research, 2020, 18(10): 186-188. |
[48] |
程韶, 舒冰, 赵永见, 等. 氧化应激对骨重建的影响[J]. 中国骨质疏松杂志, 2019, 25(10): 1478-1482. CHENG S, SHU B, ZHAO Y J, et al. Oxidative stress in bone remodeling[J]. Chinese Journal of Osteoporosis, 2019, 25(10): 1478-1482. DOI:10.3969/j.issn.1006-7108.2019.10.024 |
[49] |
CERVELLATI R, RENZULLI C, GUERRA M C, et al. E-valuation of antioxidant activity of some natural polyphenolic compounds using the briggs-rauscher reaction method[J]. Journal of Agricultural and Food Chemistry, 2002, 50(26): 7504-7509. DOI:10.1021/jf020578n |
[50] |
唐凤娟, 李青云, 郝亚荣. 松果菊苷药理学作用的新进展[J]. 疑难病杂志, 2016, 15(12): 1300-1303, 1308. TANG F J, LI Q Y, HAO Y R. New advances in the phar-macological effects of echinacoside[J]. Chinese Journal of Difficult and Complicated Cases, 2016, 15(12): 1300-1303, 1308. DOI:10.3969/j.issn.1671-6450.2016.12.026 |
[51] |
杨九凌, 祝晓玲, 李成文, 等. 咖啡酸及其衍生物咖啡酸苯乙酯药理作用研究进展[J]. 中国药学杂志, 2013, 48(8): 577-582. YANG J L, ZHU X L, LI C W, et al. Research progress in the pharmacological effects of caffeic acid and its derivative caffeic acid phenethyl ester[J]. Chinese Pharmaceutical Jour-nal, 2013, 48(8): 577-582. DOI:10.11669/cpj.2013.08.001 |
[52] |
梁晨亮, 赵振群, 刘万林. OPG/RANKL/RANK信号通路在骨巨细胞瘤发病机制中的作用[J]. 中国组织工程研究, 2020, 24(23): 3723-3729. LIANG C L, ZHAO Z Q, LIU W L. The role of OPG/RAN-KL/RANK signaling pathway in the pathogenesis of giant-cell tumor of bone[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(23): 3723-3729. DOI:10.3969/j.issn.2095-4344.2694 |
[53] |
宋敏, 王凯, 文皓楠, 等. 基于"脾主肉, 肾主骨"理论探讨OPG/RANK/RANKL信号通路与老年性骨质疏松的相关性[J]. 中国中医药信息杂志, 2020, 27(5): 1-4. SONG M, WANG K, WEN H N, et al. Correlation between OPG/RANK/RANKL signaling pathway and senile osteo-porosis based on the theory of "spleen governing muscle and kidney dominating bone"[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2020, 27(5): 1-4. |
[54] |
李子怡, 李玉坤. OPG/RANK/RANKL信号通路在骨质疏松症中的研究进展和应用[J]. 中华老年骨科与康复电子杂志, 2017, 3(2): 124-128. LI Z Y, LI Y K. Researching progress and application of OPG-RANK-RANKL signaling pathway in osteoporosis[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilita-tion (Electronic Edition), 2017, 3(2): 124-128. DOI:10.3877/cma.j.issn.2096-0263.2017.02.012 |
[55] |
李雪, 周延民, 马珊珊, 等. RANK-RANKL-OPG信号通路在骨重建中的分子作用机制[J]. 口腔医学研究, 2016, 32(6): 659-662. LI X, ZHOU Y M, MA S S, et al. Role of RANK-RANKL-OPG signaling pathway in bone remodeling[J]. Journal of Oral Science Research, 2016, 32(6): 659-662. |
[56] |
YANG X L, LI F, YANG Y N, et al. Efficacy and safety of echinacoside in a rat osteopenia model[J]. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 926928. |
[57] |
YANG L L, ZHANG B, LIU J J, et al. Protective effect of acteoside on ovariectomy-induced bone loss in mice[J]. In-ternational Journal of Molecular Sciences, 2019, 20(12): 2974. DOI:10.3390/ijms20122974 |
[58] |
兰波. 杜仲抗骨质疏松药效物质基础及机制研究[D]. 贵阳: 贵阳医学院, 2015. LAN B. Studies of pharmacodynamic material basis of Eu-commia ulmoides oliv[D]. Guiyang Medical College, 2015. |
[59] |
LIANG Z, LUO Y, LV Y G. Mesenchymal stem cell-derived microvesicles mediate BMP2 gene delivery and enhance bone regeneration[J]. Journal of Materials Chemistry B, 2020, 8(30): 6378-6389. DOI:10.1039/D0TB00422G |
[60] |
赵净颖, 段小花, 王秋婷, 等. 动物骨代谢相关信号通路研究进展[J]. 遗传, 2020, 42(10): 979-992. ZHAO J Y, DUAN X H, WANG Q T, et al. Progress on sig-nal pathways related to bone metabolism in animals[J]. Hereditas(Beijing), 2020, 42(10): 979-992. |
[61] |
金剑飞, 何维英, 孙可, 等. 补骨脂水提取物对去卵巢骨质疏松大鼠肾脏组织中TGF-β1/Smad4信号通路转导的影响[J]. 中国中医骨伤科杂志, 2020, 28(6): 1-5. JIN J F, HE W Y, SUN K, et al. The effects of water extract from Psoralea corylifolia linn on the TGF-β1/Smad4 signal-ing pathway in ovariectomized rats[J]. Chinese Journal of Traditional Medical Traumatology & Orthopedics, 2020, 28(6): 1-5. |
[62] |
ZHANG Q, ZUO H Y, YU S T, et al. RUNX2 co-operates with EGR1 to regulate osteogenic differentiation through Htra1 enhancers[J]. Journal of Cellular Physiology, 2020, 235(11): 8601-8612. DOI:10.1002/jcp.29704 |
[63] |
覃春美, 魏晓, 龚财判, 等. 血管钙化大鼠肾动脉BMP2/Smad1/Runx2信号通路的表达[J]. 四川大学学报(医学版), 2016, 47(2): 180-183. QIN C M, WEI X, GONG C P, et al. Expression of BMP2/Smad1/Runx2 signal pathway in renal artery of rat with vas-cular calcification[J]. Journal of Sichuan University (Medical Science Edition), 2016, 47(2): 180-183. |
[64] |
宋敏, 巩彦龙, 董平, 等. 基于BMP-Smad/RUNX2信号通路探讨固本增骨方含药血清对大鼠BMSCs增殖和成骨分化的影响[J]. 世界科学技术-中医药现代化, 2020, 22(4): 1159-1165. SONG M, GONG Y L, DONG P, et al. Based on bmp-smad/RUNX2 signaling pathway to investigated the effect of serum containing guben -zenggu prescription on prolifera-tion and osteogenic differentiation of BMSCs in rats[J]. Mod-ernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2020, 22(4): 1159-1165. |
[65] |
方海林, 李军孝, 姚林明, 等. 松果菊苷通过激活ERK/BMP-2信号通路促进大鼠的成骨细胞增殖观察[J]. 基层医学论坛, 2015, 19(4): 435-438. FANG H L, LI J X, YAO L M, et al. Echinacoside promotes cell proliferation of rat osteoblast through activating of ERK/BMP-2 signaling pathway[J]. The Medical Forum, 2015, 19(4): 435-438. |
[66] |
田原. 松果菊苷诱导骨髓间充质干细胞向成骨细胞分化及作用机制研究[D]. 沈阳: 辽宁中医药大学, 2015. TIAN Y. Echinacoside induces differentiation of bone mar-row mesenchymal stem cells into osteoblasts and its mecha-nism of action. Shenyang: Liaoning University of Traditional Chinese Medicine, 2015. |
[67] |
MOTOJIMA H, VILLAREAL M O, ⅡJIMA R, et al. Acteo-side inhibits type Ι allergy through the down-regulation of Ca/NFAT and JNK MAPK signaling pathways in basophilic cells[J]. Journal of Natural Medicines, 2013, 67(4): 790-798. DOI:10.1007/s11418-013-0753-4 |
[68] |
徐会金. 运动通过p38MAPK信号通路对2型糖尿病小鼠骨代谢的影响[D]. 上海: 华东师范大学, 2016. XU H J. The effects of exercise on bone metabolism in type 2 diabetes mellitus mice by p38MAPk signaling pathway[D]. Shanghai: East China Normal University, 2016. |
[69] |
吕凯歌, 王桂芳, 郝轶. 松果菊苷促进大鼠脂肪干细胞成骨分化的研究[J]. 口腔颌面外科杂志, 2019, 29(4): 181-186. LYU K G, WANG G F, HAO Y. Osteogenic differentiation of rat ADSCs induced by echinacoside[J]. Journal of Oral and Maxillofacial Surgery, 2019, 29(4): 181-186. DOI:10.3969/j.issn.1005-4979.2019.04.001 |
[70] |
方伟祯, 蔡振华, 古文深, 等. 急性髓系白血病中医分型与多项基因突变关系[J]. 中国中西医结合杂志, 2020, 40(11): 1328-1332. FANG W Z, CAI Z H, GU W S, et al. Study on relationship between Chinese medical syndrome typing of acute myeloid leukemia and mutations of multiple genes[J]. Chinese Jour-nal of Integrated Traditional and Western Medicine, 2020, 40(11): 1328-1332. DOI:10.7661/j.cjim.20200830.025 |
[71] |
刘天云. 巨颌症致病基因SH3BP2对破骨细胞样细胞分化调控作用的研究[D]. 天津: 天津医科大学, 2011. LIU T Y. The function of protein SH3BP2 in the differentia-tion of osteoclast-like cell[D]. Tianjin: Tianjin Medical Uni-versity, 2011. |
[72] |
WEISBERG E L, SCHAUER N J, YANG J, et al. Inhibition of USP10 induces degradation of oncogenic FLT3[J]. Nature Chemical Biology, 2017, 13(12): 1207-1215. DOI:10.1038/nchembio.2486 |
[73] |
孙玉兰, 刁云鹏, 孙伟, 等. 毛蕊花糖苷与99Tc-MDP联合治疗糖皮质激素诱导大鼠骨质疏松的效果及其分子机制研究[J]. 中国骨质疏松杂志, 2020, 26(4): 524-528. SUN Y L, DIAO Y P, SUN W, et al. Therapeutic effect and molecular mechanism of verbascoside combined with 99Tc-MDP on glucocorticoidinduced osteoporosis in rats[J]. Chi-nese Journal of Osteoporosis, 2020, 26(4): 524-528. DOI:10.3969/j.issn.1006-7108.2020.04.011 |