文章信息
- 张杰, 张浩, 丁辉, 宋新波
- ZHANG Jie, ZHANG Hao, DING Hui, SONG Xinbo
- 开心散治疗阿尔茨海默病的研究进展
- Research progress of Kaixin Powder treating Alzheimer's disease
- 天津中医药大学学报, 2022, 41(4): 521-530
- Journal of Tianjin University of Traditional Chinese Medicine, 2022, 41(4): 521-530
- http://dx.doi.org/10.11656/j.issn.1673-9043.2022.04.21
-
文章历史
收稿日期: 2022-03-05
安神益智方开心散(KXS)来源于唐代孙思邈撰写的《备急千金药方》, 人参作为君药, 补益脾气以助运化, 茯苓、石菖蒲、远志三味药材作为辅药以助行气化湿开窍, 4味药配伍合用, 借助药物间的相互作用使药效最大化, 在临床上用于阿尔兹海默病(AD)、抑郁症等神经系统疾病的治疗[1]。
流行病学研究发现: AD患病率逐年升高, 老年女性患病率高于男性[2]。中医讲AD属脑病范畴, 古代医学认为其病机在脾, 脾虚以致运化无力, 痰饮湿浊闭阻九窍, 使人精神活动受阻[3], 西医讲AD为以进行性记忆力减退、智能障碍及人格改变为特征的神经功能障碍疾病[4-5], 发病机制较为复杂, 基因突变学说, 神经递质学说等不断被提出[6]。近年来, 中医药事业不断发展, 中医主张从"整体观念"到"辨证论治", 中药发挥标本兼治的作用[7]。本文综述了近几年KXS在AD治疗方面的相关内容, 为后续研究和新药开发提供参考。
1 处方考证随着朝代更换, 各时期医学古籍衡量标准略有不同, 在计量方法方面发生变化[8], 故对广为使用的复方制剂的原始考究显得尤为重要, 对记载方剂剂量及功效进行考究以保证药物使用的安全性, 明确其疗效。
张林等[9]对唐代记载KXS的两版传世通行本-《宋校本》《新雕本》中四味药材的剂量展开考证, 结果表明《宋校本》记载的剂量更为可靠。书中"分"、"两"同用, 唐"小秤"称取: "君药人参、远志各四分, 即一两, 茯苓二两, 石菖蒲一两, 每服方寸匕, 日三饮。"经查阅, 一两以汉代计量即为现代的13.8 g, 一方寸匕药物重量以《新修本草》标准折算约为5 g, 《中药大辞典》记载一方寸匕植物药末质量1 g[10], 即散剂日服量为人参、远志、石菖蒲各0.6 g, 茯苓1.2 g。
易腾达等[11]查阅古籍, 对KXS及其类方在主治、功效等方面展开追溯。名方KXS为主好忘方, 补心脾肾之气, 助阳以除痰湿阴邪, 随后在此基础上衍生出来的组方相同、配比不同和组方药物加减所成的紧扣健忘病机的方剂, 如《古今录验》中记载: "人参三两, 远志、茯苓、石菖蒲各二分, 主治恍惚健忘, 志不定。"[12]宋代《圣济总录·卷第一百八十六·补益门》中记载的远志散, 由KXS外加黄连成方, 补心气, 清心除烦以治心热健忘, 对痴呆中记忆力减退现象具有改善作用[13]; 清代记载于《类证治裁·卷四·健忘》的加减固本丸, 增强了滋阴功效以治阴虚津亏之健忘; 尚有其他类方功效扩展到聪耳目以治目不能远视, 填精养神, 平肝息风, 止汗等[11]。现代临床研究表明, KXS可用于髓海失充和痰浊蒙窍证的痴呆的治疗。用药于以认知功能障碍为主要临床特征的AD和继发于中风后的血管性痴呆(VD)患者, 学习记忆能力减退是其主要表现形式[14-15]。KXS联合安理申用药, 以精神状况检查表(MMSE), 记忆障碍自评量表(AD8)对患者神志、社会活动、记忆等方面进行评价, 患者认知、记忆能力提高, 联合用药与单纯西药治疗在临床疗效上存在显著性差异, 表明KXS对痴呆有较好地改善作用[14, 16-17]。
人参、茯苓、石菖蒲、远志常出现在记忆障碍治疗的组方中[18], 方中重用茯苓, 增强健脾利湿, 除痰饮以安神, 是不可或缺的重要组成部分。对古方追踪考证, 为明确原方KXS治疗AD所使用的剂量, 后期衍生出的相似功效类方提供理论支持, 并展示了复方KXS中药材配伍比例及药味改变所带来的功效变化及现代临床应用研究。
2 血中移行成分研究药物进入机体后需要经过吸收, 分布, 代谢, 排泄四个体内处置过程。中药方剂所含成分众多、复杂, 吸收入循环系统的成分可作为复方的有效成分。因此, 利用血清药物化学明确血中移行成分对后期疾病的治疗十分关键。起效成分未必都以原型形式出现, 还包括经机体代谢活动后形成的活性代谢物。为探究KXS治疗AD的药效物质基础, Wang等[19]针对KXS体内药代动力学行为展开研究, 在血浆中检测到47种原型成分, 包括寡聚糖酯类、皂苷类、挥发油类等活性化合物和22种不同化合物一、二阶段代谢物。本文将针对4味药材血中移行成分分别进行总结。
2.1 远志远志可阻止神经退化以改善记忆损伤, 是一种具有增强认知活性的天然低副作用药材[20-21]。寡聚糖酯类化合物作为远志中主要活性成分之一, 在人类神经系统中起到重要作用, 也是远志给药后进入人体循环系统中的重要成分[22]。汪娜等[23]利用UPLC-MS联用技术, 鉴定了KXS 60%醇提物给药后大鼠血中移行成分, 结果表明, 大鼠血清中存在包括远志蔗糖酯A、B, 3, 6-二芥子酰基蔗糖等在内的14个远志糖酯类原型成分和4个糖酯类代谢产物, 其中代谢产物3, 4, 5-三甲氧基肉桂酸(TMCA)被证实有一定的活性, 在KXS治疗AD中发挥积极作用。巴寅颖等[24]通过构建AD动物模型, 探究单药材远志水提物、3, 6-二芥子酰基蔗糖单体成分及KXS水提物给药后, 3, 6-二芥子酰基蔗糖在大鼠体内的药动学差异, 指明复方KXS中药材成分的相互作用使3, 6-二芥子酰基蔗糖药时曲线出现双峰现象且Cmax、T1/2值均较另两种给药方案高, 提高了其生物利用度和治疗AD的效果。
三萜皂苷类成分具有神经保护、改善AD的药理活性[25], 次级皂苷tenuifolin被证实可减轻Aβ25-35肽诱导的神经毒性以改善AD小鼠认知[26], 逆转神经元凋亡[27]、透过血脑屏障进入脑组织进而增强学习记忆[28]。Wang等[29]对远志皂苷的肠道代谢物在体内的动态变化展开实验, TMCA、对甲氧基肉桂酸(PMCA)和tenuifolin 3种活性代谢产物药代动力学参数得以表征, 研究发现TMCA与PMCA吸收较快, 而tenuifolin在体内作用时间较长, 故可在不同水平与时间上起到神经保护作用。
此外, KXS肠吸收及血中移行成分药效实验结果表明, 远志
君药人参含有多类化学成分, 具有多种药理作用, 其中人参皂苷是人参的主要活性成分, 可分为原人参二醇型、原人参三醇型和齐墩果酸3类[31]。临床报道称人参对AD患者认知衰退, 行为活动等方面具有改善作用, 以各种评分量表进行检测[32-33]。在动物实验中, 对给予KXS的AD大鼠脑内及血中成分分析, 于血中鉴定出的23种化合物和脑中的10种化合物分别有8种和4种源于人参, 进一步佐证了人参在KXS复方中君药的地位[34]。刘春芳等[35]研究了KXS的成分组成及给药大鼠血中移行物质, 借助HPLC/DAD/ESI-MSn分析平台, 通过保留时间、质谱碎片信息等比对, 确定了KXS中39种成分, 其中人参皂苷数量达到11种, 分别为Re, Rf, Rg2, 三七皂苷R2, Rb1, Rd, Rb2, Ra3, Rg3, Rc, R0, 大鼠灌服KXS后, 在血浆中检测到除Rg2、Ra3以外的九种人参皂苷及三七皂苷R4, 并没有发现人参皂苷的一级二级代谢产物; 另有实验证实, 灌胃KXS 1h后进行大鼠血浆中药材成分测定, 血中移行成分包括23个原型成分和3个代谢成分, 人参皂苷类均以原型形式被指认, 可能是由于该类型化合物在体内代谢酶和肠道菌群作用下产生了代谢产物, 只是实现了内部的相互转化[36]。此外, Rb1作为人参药材中含量较高的人参皂苷成分, 对AD等神经系统疾病治疗有着显著效果。最新研究表明Rb1可通过促进神经生长及生长促进激酶的表达, 在β-淀粉样蛋白(Aβ)导致的细胞凋亡中充当抗凋亡剂的角色以保护海马神经元[37]。研究发现, 在肠道菌群作用下, Rb1去糖基化为人参皂苷CK[38], 在氢溴酸东莨菪碱诱导的认知损伤动物模型中, 代谢物人参皂苷CK通过调节Aβ的浓度, 激活核转录因子E2相关因子2/Kelch样环氧氯丙烷相关蛋白-1(Nrf2/Keap1)信号通路以改善模型大鼠认知功能[39], 故可视为KXS抗AD的潜在活性成分。在对KXS复方药代动力学相关文献整理研读时, 并未发现血中移行成分有人参皂苷CK的相关报道, 可能是由于分析条件在选取方面, 取血点的时间确定方面有待进一步优化, 机体中的代谢酶对其结构影响有待进一步考证, 为后期复方KXS人参血中移行成分的发现提供见解与补充。
2.3 茯苓通过对前期文献整理发现, 茯苓常被记载于治疗记忆障碍的组方中[18], 可参与人类疾病和物质代谢活动[40], 茯苓多糖和三萜酸类成分已被证实是KXS中的活性成分[1, 41], 但目前对KXS中茯苓药材入血成分研究报道较少。茯苓水提物通过TUNEL实验发现其所含成分具有减弱Abeta1-42诱导的PC12细胞凋亡, 发挥神经细胞保护的作用[42]。开展茯苓类药材中三萜类化合物药代动力学研究发现, 经醇提物给药后, 茯苓组总三萜吸收量较其他组高, 且茯苓酸、脱氢茯苓酸等成分在大鼠血浆中以原型形式被检测到[43-44], Yu等[45]通过体外细胞实验证实, 脱氢茯苓酸可通过恢复bafilomycin A1转染的PC12细胞中溶酶体酸化和自噬来降低Aβ1-42的含量以减小神经细胞毒性。以D-半乳糖、三氯化铝创建AD病症大鼠模型, 给予茯苓多糖(PCP)干预, 行为学方法结果可看出PCP提高了实验大鼠的空间位置感, 学习记忆能力得到改善, 同时海马切片图像显示给药后AD大鼠神经元呈现规则排列[46]。茯苓在KXS治疗AD的过程中起到一定的作用, 其药效物质基础有待进一步考证, 故后期可对KXS中茯苓的血中移行成分展开深入研究。
2.4 石菖蒲现代药理学表明开窍药石菖蒲具有镇静、抗疲劳、抑菌、益智等功效, 其所含成分可透过血脑屏障(BBB)以用于心脑血管、神经系统等疾病的治疗[47], 动物病理模型发现石菖蒲对神经损伤所致认知记忆, 空间学习能力减退有改善[48]。实验证实KXS灌胃给药后可在血中、脑脊液中检测并鉴定出石菖蒲的挥发油成分[49], 进一步证实了石菖蒲对神经系统疾病的疗效。星形胶质细胞影响神经可塑性, 在AD疾病发生发展中起到一定作用[50], Yang等[51]在SD大鼠海马CA1区注射Aβ1-42构建大脑损伤痴呆模型, 探讨β-细辛醚对星形胶质细胞的影响, 展开一系列行为学测试和血液中生化指标检测等实验以论证β-细辛醚能够改善大鼠学习记忆、增强空间探索能力、提升脑组织保护和抑制星形胶质细胞活化。另有研究表明β-细辛醚可干预PC12细胞模型自噬活动, 微管相关蛋白1轻链3 (LC3)、BECN、P62等指标用于检测自噬行为, IF和蛋白质印迹数据提供支持[52], 该实验为β-细辛醚对中枢神经系统保护机制提供方向。馏分中另一挥发油成分α-细辛醚对AD的治疗也有报道, α-细辛醚被证明具有阻止星形胶质细胞活化, 抑制APP/PS1转基因小鼠中Aβ、微管相关蛋白(tau)聚集以降低炎症因子浓度, 同时还能作用于γ-氨基丁酸(GABA)受体以维持中枢神经系统兴奋与抑制活动的平衡, 表现出保护神经系统的巨大潜力[53], 为治疗AD药物设计提供思路。
单个药味、复方给药, 在体内的药代动力学行为不尽相同, 中药所含成分复杂, 成分之间的相互作用会促进甚至抑制某种成分在体内的含量和效果。王伟等[54]通过开展石菖蒲对人参皂苷成分体内吸收影响实验得出, KXS复方中3种人参皂苷Rg1、Rb、Re药时曲线下面积与石菖蒲呈现剂量依赖性, 石菖蒲中的成分可促进君药人参中成分的体内吸收以增强对中枢神经系统疾病的治疗, 这也证实了中药复方配伍增效的作用。
3 KXS治疗AD相关药理作用研究疾病的发生发展是由于体内平衡受到破坏, 现有研究[55-56]发现, AD的产生与体内脂质分子的变化有着密切的联系, 脂质代谢组学从分子层面揭示了KXS中药效成分对机体的内源性小分子代谢物的回调作用和富集的相关通路, 对机体内炎症因子, 神经细胞生长、凋亡等方面产生影响, 具有一定的药理作用。本文将从以下几点对KXS治疗AD相关药理作用展开综述, 为明确药物影响的药理学指标、后期治疗AD的新药开发提供方向。
3.1 保护神经元Aβ聚集和Tau的过度磷酸化是AD发生的经典标志, 两者过度表达会造成神经元损伤[57]。β-淀粉样斑块是AD一大特征, 成熟的淀粉样原纤维是斑块的主要组成成分, Aβ聚集体的修饰与成熟会增加脑内总Aβ水平, 其中Ser8处磷酸化的Aβ衍生物会促进其他类型的Aβ聚集, 且Aβ的中间体-原纤维和寡聚体对神经系统的毒性会诱导AD病症的进一步加深, 使患者神经元受损、认知出现障碍[58]。以Aβ为研究目标展开分析, 脑啡肽酶(NEP), 胰岛素降解酶(IDE)作为主要的淀粉样蛋白清除酶, 是AD治疗的选择之一[59]。Wang等[60-61]探讨了KXS对Aβ降解的影响, ELISA试剂盒检测脑内Aβ42浓度变化, 同时对NEP、IDE、血管紧张素转换酶等Aβ变性酶的表达进行了表征, 发现KXS增加了海马区NEP、IDE蛋白表达水平, 加速了Aβ的降解以降低对脑部神经元的负担。另有研究发现[62], 作为KXS活性成分之一的人参皂苷Rg1能够抑制细胞周期素依赖蛋白5(CDK5)介导的过氧化物酶增殖物激活受体(PPary)磷酸化以上调下游靶蛋白IDE的表达, 同时人参皂苷Rg1亦被证明对NEP有促进作用, 以SK-N-SH细胞构建的体外AD模型进行验证, RT-PCR半定量结果显示Rg1可对抗脂多糖(LPS)对NEP mRNA的抑制效果[63]。此外, 含有皂苷等多种活性成分的远志水提液对AD小鼠影响实验中, 发现低、中、高浓度的水提液均可上调海马组织中NEP、IDE mRNA及蛋白水平, 尤以高浓度者为佳[64]。进一步为KXS可通过促进Aβ降解酶的表达以改善认知功能提供依据。
Tau负责调节神经元中微管的组装和稳定, 在AD等神经退行性疾病病理条件下过度磷酸化的Tau异常组装成细丝状, 形成神经元纤维缠结, 杀死神经元细胞。研究已证实Tau会损害AD实验对象的核细胞质运输, 出现核包膜内陷, 染色质松弛等现象使神经变性[65-67]。开展网络药理学研究预测KXS治疗AD作用机制, 构建成分-靶点网络, 通路富集于Tau蛋白过度磷酸化等四个病理模块[68], Guo等[34]研究发现磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)信号通路会影响微管蛋白磷酸化, 对神经受损模型进行KXS给药, 结果显示与阳性对照组药效无明显差异, 给药后PI3K/Akt蛋白信号通路上游靶标蛋白上调, 下游靶标Tau过磷酸化表达下调, 大鼠行为学得到改善。KXS中活性成分人参皂苷Rb1, Rd, Rg1通过调节糖原合成酶激酶(GSK-3β)/Tau通路以改善认知, 故其可作为有关神经退行性疾病的候选组分[69-71]。另有研究[72]表明远志皂苷以剂量依赖的方式增加O-GlcNAc糖基化水平以抑制tau蛋白相关位点的磷酸化。此外, 对六首KXS及其类方治疗AD药理作用展开研究, 6种给药大鼠组Tau, P-Tau蛋白表达量较模型组在不同程度上降低, 逃避潜伏期缩短, 穿越平台次数增加[73]。综上所述, Aβ、Tau作为AD重要的致病蛋白, 可成为药物开发作用靶点以保护神经元、改善认知功能。
3.2 抗氧化应激氧化应激是导致机体衰老的重要因素, 自由基衰老学说认为由于自由基对机体组织细胞的攻击作用, 诱发了多种恶性疾病。后期补充机体的抗氧化防御体系和活性氧之间失衡而使蛋白质、脂质、DNA受损[74]。活性氧(ROS), 丙二醛(MDA), 超氧化物歧化酶(SOD), 谷胱甘肽过氧化物酶(GSH-PX)常作为考察抗氧化作用的指标, Xu等[75]腹腔注射东莨宕碱氢溴酸盐溶液构建认知功能障碍小鼠模型, 以盐酸多奈哌齐作为阳性对照药物探讨KXS对模型小鼠体内氧化应激有关指标的影响, 通过与模型组、阳性对照给药组对比发现, KXS组可减轻氧化应激损伤, SOD、GSH-PX活性较模型组有所提高, ROS、MDA氧化指标降低, 故KXS可通过提升机体抗氧化能力以增强记忆。尚有加味KXS, KXS与参麦散共用, 增加了滋补心阴, 改善血液流变学的功能, 并在此基础上加入莪术、栀子以加强祛湿散滞能力, 采用Aβ1-42双侧海马区注射构建动物模型, 石杉碱A为阳性对照, 活性测定试剂盒检测SOD活性, 酶标仪测量MDA数值, 结果图显示给药组与阳性对照组作用趋势一致, 成功逆转了模型组SOD与MDA水平, 在AD治疗中显示出抗氧化作用[76]。
3.3 抑制促炎因子炎症反应参与AD的发生发展过程, 神经胶质细胞过度活化, 释放大量炎症因子, 造成神经元的坏死和中枢神经系统损伤[77]。借助网络药理学方法预测KXS防治AD的作用机制实验, 发现了药物与疾病的公共靶点, 并对靶点蛋白进行KEGG和GO生物功能分析, 结果显示炎症通路是其防治通路之一。被激活的一氧化氮合酶促使AD患者脑内促炎因子上调, BBB功能发生障碍, 神经系统出现炎症浸润[78]。韩丽君等[79]给C57BL/6J小鼠连续灌胃KXS后取其含药血清(SCKXS), 并以此对APP/PS1双转基因小鼠给药, 发现给予含药血清组小鼠BBB通透性降低, 白细胞介素(IL)-1β、IL-6炎症因子较模型组减少, PCR扩增实验显示海马区核因子NF-κBp65 mRNA相对表达量下调, 故推测NF-κBp65可作为AD治疗的蛋白靶点。肿瘤坏死因子(TNF)-α、IL-8细胞因子参与机体免疫应答与组织的损伤修复生理过程, 有研究发现, AD小鼠服药后, 脑组织中的TNF-α、IL-8含量下降, 而在血清中水平升高, 体液免疫应答被激活, 证实KXS发挥的免疫抗炎作用[80]。
3.4 调节胆碱能系统胆碱能系统作为神经传导重要通路之一, 在学习记忆方面起到一定作用, 且胆碱能系统的损伤会导致与AD相关的认知缺陷, 可推测其在AD发病过程中占有关键地位[81]。两种关键酶-胆碱乙酰转移酶(ChAT)、乙酰胆碱酯酶(AchE)和乙酰胆碱(Ach)是胆碱能系统标志物[82]。目前, 临床上治疗AD使用最多的药物属于AchE抑制剂类, 减少Ach酶解, 增加突触间隙Ach浓度以改善学习水平[83]。对KXS治疗AD作用机制展开网络药理学靶标预测与通路分析, 众多关键基因与调节神经系统信号通路相关联, 分子对接技术显示能够促进神经元发育的AchE与KXS中小分子化合物能量对接得分低, 具有较好的结合能力, 故可将其视为KXS治疗AD的重要靶标蛋白[84]。开展探究KXS对东莨宕碱致小鼠认知障碍保护作用实验, 活性酶检测结果发现, 海马和皮质区AchE活性降低, Ach水平、ChAT活性明显升高, 小鼠的神经功能得到提升[85], 故KXS可通过调节胆碱能神经递质发挥抗AD作用, 同时胆碱能系统学说为临床新药研发提供理论依据。
3.5 其他除了以上综述的药理作用, KXS被发现可抑制神经细胞凋亡, 调节凋亡基因的表达, 体外培养β-淀粉样蛋白致人神经母细胞瘤SH-SY5Y损伤模型, MTT法检测到KXS含药血清使得细胞活力有了明显提升, 流式细胞仪检测到的细胞凋亡率由模型组的37%降至10%左右; 经研究发现, 与凋亡相关的基因B细胞淋巴瘤-2(Bcl-2), Bax, 在快速老化小鼠模型脑组织中两者的比率较正常组降低, 给药后出现回调。此外, KXS还可以恢复谷氨酸能神经递质的不足, 增强下游与学习记忆相关的转导分子如细胞外调节蛋白激酶、Ca2+/钙调蛋白依赖性蛋白激酶的表达, 以解释其治疗AD的作用。
4 结语中药复方KXS多类方, 以多成分、多靶点、多通路的整合效应优势弥补了西药单一靶点机制的不足, 基于《备急千金药方》中记载的KXS, 衍生出多种药味和配比不同的类方, 如远志散, 开心丸等, 并在功能主治方面有了扩展, 现代临床多用于由脾虚而聚湿成痰, 蒙蔽心窍所致的以认知功能障碍为核心症状的抑郁、VD患者的治疗, 患者学习记忆能力和生活质量有了明显提高。但临床上关于KXS治疗AD的报道较少, KXS中人参、石菖蒲、远志、茯苓凭借理气祛湿, 醒神开窍功效在中药治疗AD研究中出现频次较高, 故后期可对其临床疗效展开深入研究。中药-中药成分间相互作用可干预AD发生发展途径以增强学习记忆认知水平, 研究发现灌胃KXS的AD动物模型血中移行成分包括人参皂苷类、远志寡聚糖酯类、茯苓三萜酸类、石菖蒲挥发油类等原型形式及活性代谢产物, 但对KXS中茯苓药材血中移行成分报道较少, 后期应予以补充。同时, 多种作用位点被发现以改善AD相关症状, Aβ学说的盛行, 淀粉样前体蛋白经水解形成Aβ, 在脑组织中聚集增加神经毒性, 微管蛋白过度磷酸化后的异常缠绕, 氧化自由基、炎症因子浸润及级联反应等都对神经组织细胞造成损伤, 大量实验证实KXS在以上方面均表现出相应的干预行为, 以使AD动物的认知, 细胞模型中相关参数得到改善, 对KXS治疗AD展开深入研究, 为后期KXS广泛使用和治疗AD的新药研发提供指导。
[1] |
王瑾, 周小江, 胡园, 等. 开心散药效物质基础和药理作用机制的研究进展[J]. 中草药, 2020, 51(18): 4780-4788. WANG J, ZHOU X J, HU Y, et al. Research progress on pharmacodynamic material basis and pharmacological action mechanism of Kaixin Powder[J]. Chinese Traditional and Herbal Drugs, 2020, 51(18): 4780-4788. |
[2] |
米日妮萨·凯才尔, 闫楚涵, 郭慧芳, 等. 阿尔茨海默病的发病机制及相关研究进展[J]. 解剖学研究, 2021, 43(3): 276-281. MIRINISA K C E, YAN C H, GUO H F, et al. The pathogenesis and related research progress of Alzheimer's disease[J]. Anatomy Research, 2021, 43(3): 276-281. DOI:10.3969/j.issn.1671-0770.2021.03.017 |
[3] |
郭徵艺, 蒋薇, 赵思琪, 等. 基于"脾不及则九窍不通"诠释益气开窍法防治痴呆的科学内涵[J]. 中医杂志, 2019, 60(20): 1798-1800. GUO Z Y, JIANG W, ZHAO S Q, et al. Interpreting the scientific connotation of preventing and treating dementia by benfiting qi for resuscitation based on "spleen insufficiency is characterized by obstruction of the nine orifices"[J]. Journal of Traditional Chinese Medicine, 2019, 60(20): 1798-1800. |
[4] |
毛瑞, 徐仕皓, 孙光文, 等. 阿尔茨海默病的相关机制研究[J]. 卒中与神经疾病, 2021, 28(4): 464-467. MAO R, XU S H, SUN G W, et al. Research on the related mechanisms of Alzheimer's disease[J]. Stroke and Nervous Diseases, 2021, 28(4): 464-467. DOI:10.3969/j.issn.1007-0478.2021.04.019 |
[5] |
OZBEN T, OZBEN S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease[J]. Clinical Biochemistry, 2019, 72(3): 87-89. |
[6] |
余茂强, 吴绍长, 杨华. 阿尔茨海默病的病机相关性研究概况[J]. 中国现代医生, 2020, 58(17): 183-187. YU M Q, WU S C, YANG H. Overview of the pathogenesis of Alzheimer's disease[J]. China Modern Doctor, 2020, 58(17): 183-187. |
[7] |
胡雪纯, 贾妮. 应用中医"藏象学说"理论探析阿尔茨海默病[J]. 辽宁中医药大学学报, 2021, 23(1): 177-180. HU X C, JIA N. Analysis of Alzheimer's disease with visceral image theory of traditional Chinese medicine[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2021, 23(1): 177-180. |
[8] |
汪小瑞, 张若, 杜娟. 中药方剂权衡变化浅析[J]. 中药与临床, 2020, 11(1): 58-60. WANG X R, ZHANG R, DU J. A brief analysis of the changing law of traditional Chinese medical weights and measures[J]. Pharmacy and Clinics of Chinese Materia Medica, 2020, 11(1): 58-60. |
[9] |
张林, 曾凤. 《千金要方》开心散剂量的文献考证[J]. 北京中医药大学学报, 2020, 43(8): 641-644. ZHANG L, ZENG F. Textual research on the dosage of Kaixin San in Qian Jin Yao Fang[J]. Journal of Beijing University of Traditional Chinese Medicine, 2020, 43(8): 641-644. DOI:10.3969/j.issn.1006-2157.2020.08.005 |
[10] |
南京中医药大学. 中药大辞典[Z]. 上海: 上海科学技术出版社, 2006. Nanjing University of Traditional Chinese Medicine. Dictionary of traditional Chinese medicine[Z]. Shanghai: Shanghai Scientific & Technical Publishers, 2006. |
[11] |
易腾达, 李玉丽, 谭志强, 等. 经典名方开心散功能主治衍变与剂量的关联考证[J]. 中国实验方剂学杂志, 2021, 27(7): 24-33. YI T D, LI Y L, TAN Z Q, et al. Relation textual research between effect variation and dosage of famous classical formula Kaixin San[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(7): 24-33. |
[12] |
刘屏, 汪进良, 王燕, 等. 开心散类方配伍及抗抑郁作用研究[J]. 中华中医药杂志, 2005, 20(5): 279-281, 260. LIU P, WANG J L, WANG Y, et al. Study on dosage application of herbs in class formulas of Kaixin San and their actions on depression[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2005, 20(5): 279-281, 260. |
[13] |
郭静, 李斌, 王智超, 等. 远志散对D-半乳糖致衰老小鼠学习记忆及氧化应激水平的影响[J]. 中华中医药学刊, 2019, 37(9): 2144-2147, 2314. GUO J, LI B, WANG Z C, et al. Effects of Yuanzhi Powder on learning and memory ability and oxidative stress level of D-galactose induced aging mice[J]. Chinese Archives of Traditional Chinese Medicine, 2019, 37(9): 2144-2147, 2314. |
[14] |
林丹霞, 陈振. 开心散联合盐酸多奈哌齐片对阿尔茨海默病的初步临床研究[J]. 中医临床研究, 2018, 10(23): 73-75. LIN D X, CHEN Z. A clinical study on treating AD with Kaixin San plus donepezil hydrochloride tablets[J]. Clinical Journal of Chinese Medicine, 2018, 10(23): 73-75. DOI:10.3969/j.issn.1674-7860.2018.23.034 |
[15] |
邹昊, 邹勇. 邹勇教授治疗血管性痴呆的临床经验[J]. 光明中医, 2020, 35(24): 3974-3976. ZOU H, ZOU Y. Clinical experience of professor ZOU yong in the treatment of vascular dementia[J]. Guangming Journal of Chinese Medicine, 2020, 35(24): 3974-3976. DOI:10.3969/j.issn.1003-8914.2020.24.050 |
[16] |
吴勤烽. 从毒损脑络论治血管性痴呆50例临床疗效分析[J]. 新中医, 2021, 53(2): 32-35. WU Q F. Analysis of 50 cases of vascular dementia treated from theory of toxin damaging the brain collateral[J]. Journal of New Chinese Medicine, 2021, 53(2): 32-35. |
[17] |
刘彦廷, 蔡忠明, 陈应柱. 开心散治疗血管性痴呆疗效观察及对血清Livin的影响[J]. 山西中医, 2015, 31(8): 14-16. LIU Y T, CAI Z M, CHEN Y Z. Clinical observation of Kaixin Powder on cerebral vascular dementia and its effect on serum livin[J]. Shanxi Journal of Traditional Chinese Medicine, 2015, 31(8): 14-16. DOI:10.3969/j.issn.1000-7156.2015.08.008 |
[18] |
MAY B H, FENG M, ZHOU I W, et al. Memory impairment, dementia, and Alzheimer's disease in classical and contemporary traditional Chinese medicine[J]. Journal of Alternative and Complementary Medicine, 2016, 22(9): 695-705. DOI:10.1089/acm.2016.0070 |
[19] |
WANG X T, LIU J, YANG X M, et al. Development of a systematic strategy for the global identification and classification of the chemical constituents and metabolites of Kaixin San based on liquid chromatography with quadrupole time-of-flight mass spectrometry combined with multiple data-processing approaches[J]. Journal of Separation Science, 2018, 41(12): 2672-2680. DOI:10.1002/jssc.201800067 |
[20] |
JESKY R, CHEN H L. Are herbal compounds the next frontier for alleviating learning and memory impairments? An integrative look at memory, dementia and the promising therapeutics of traditional Chinese medicines[J]. Phytotherapy Research: PTR, 2011, 25(8): 1105-1118. DOI:10.1002/ptr.3388 |
[21] |
PARK C H, CHOI S H, KOO J W, et al. Novel cognitive improving and neuroprotective activities of Polygala tenuifolia Willdenow extract, BT-11[J]. Journal of Neuroscience Research, 2002, 70(3): 484-492. DOI:10.1002/jnr.10429 |
[22] |
BA Y Y, WANG M L, ZHANG K F, et al. Intestinal absorption profile of three Polygala oligosaccharide esters in polygalae Radix and the effects of other components in polygalae Radix on their absorption[J]. Evidence-Based Complementary and Alternative Medicine, 2019, 2019: 1379531. |
[23] |
汪娜, Hassan AHMAD, 贾永明, 等. UHPLC-MS法鉴定大鼠灌服开心散后血中远志糖酯类化合物及其代谢产物[J]. 药学学报, 2017, 52(10): 1592-1598. WANG N, AHMAD H, JIA Y M, et al. Identification of Polygala oligosaccharide esters and their metabolites in rat plasma after oral administration of ethanol extract of Kaixin San by UHPLC-MS[J]. Acta Pharmaceutica Sinica, 2017, 52(10): 1592-1598. |
[24] |
巴寅颖, 姜艳艳, 刘洋, 等. 基于3, 6'-二芥子酰基蔗糖在记忆障碍模型大鼠体内表征的单体、远志及其经典方开心散药代动力学[J]. 中国实验方剂学杂志, 2012, 18(14): 138-142. BA Y Y, JIANG Y Y, LIU Y, et al. Comparative pharmacokinetics of 3, 6'-disinapoyl sucroseafter oral administration of pure 3, 6'-disinapoyl sucrose, Radix polygalae extract and Kaixinsan in acquired dysmnesia model rats[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2012, 18(14): 138-142. DOI:10.3969/j.issn.1005-9903.2012.14.042 |
[25] |
LI C J, FU J, YANG J Z, et al. Three triterpenoid saponins from the roots of Polygala japonica houtt[J]. Fitoterapia, 2012, 83(7): 1184-1190. DOI:10.1016/j.fitote.2012.07.002 |
[26] |
LIU Y M, LI Z Y, HU H, et al. Tenuifolin, a secondary saponin from hydrolysates of polygalasaponins, counteracts the neurotoxicity induced by Aβ25-35 peptides in vitro and in vivo[J]. Pharmacology Biochemistry and Behavior, 2015, 128(3): 14-22. |
[27] |
WANG L, JIN G F, YU H H, et al. Protective effects of tenuifolin isolated from Polygala tenuifolia Willd roots on neuronal apoptosis and learning and memory deficits in mice with Alzheimer's disease[J]. Food & Function, 2019, 10(11): 7453-7460. |
[28] |
MA B, LI X T, LI J, et al. Quantitative analysis of tenuifolin concentrations in rat plasma and tissue using LC-MS/MS: application to pharmacokinetic and tissue distribution study[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88(5): 191-200. |
[29] |
WANG Q, XIAO B X, PAN R L, et al. An LC-MS/MS method for simultaneous determination of three Polygala saponin hydrolysates in rat plasma and its application to a pharmacokinetic study[J]. Journal of Ethnopharmacology, 2015, 169(7): 401-406. |
[30] |
巴寅颖, 姜艳艳, 刘洋, 等. 基于远志酮在记忆障碍模型大鼠体内药代动力学特性的远志及开心散药物属性研究[J]. 北京中医药大学学报, 2012, 35(8): 549-553. BA Y Y, JIANG Y Y, LIU Y, et al. Study on medical attribute of Yuanzhi(Radix Polygalae) and Kaixin San based on pharmacokinetics features of polygalaxanthone Ⅲ in rats with dysmnesia[J]. Journal of Beijing University of Traditional Chinese Medicine, 2012, 35(8): 549-553. |
[31] |
王丽娜, 姜珊, 王溪竹, 等. 人参茎叶中原二醇型、原三醇型人参皂苷抗疲劳作用试验[J]. 中国兽医杂志, 2019, 55(8): 81-84. WANG L N, JIANG S, WANG X Z, et al. Study on anti-fatigue effect of protopanaxadiol-type Ginseng and protopanaxatriol-type Ginseng stem and leave saponin[J]. Chinese Journal of Veterinary Medicine, 2019, 55(8): 81-84. |
[32] |
KIM H J, JUNG S W, KIM S Y, et al. Panax ginseng as an adjuvant treatment for Alzheimer's disease[J]. Journal of Ginseng Research, 2018, 42(4): 401-411. DOI:10.1016/j.jgr.2017.12.008 |
[33] |
HEO J H, LEE S T, OH M J, et al. Improvement of cognitive deficit in Alzheimer's disease patients by long term treatment with Korean red ginseng[J]. Journal of Ginseng Research, 2011, 35(4): 457-461. DOI:10.5142/jgr.2011.35.4.457 |
[34] |
GUO S R, WANG J H, WANG Y J, et al. Study on the multitarget synergistic effects of Kaixin San against Alzheimer's disease based on systems biology[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019(7): 1707218. |
[35] |
LIU C F, YANG W Z, LIU I, et al. Characterization of chemical constituents and in vivo metabolites of Kaixin San prescription by HPLC/DAD/ESI-MSn[J]. Journal of Chinese Pharmaceutical Sciences, 2012, 21(6): 569-576. |
[36] |
LYU C X, HE B S, SUI Z Y, et al. Identification and determination of the major constituents in Kaixin San by UPLC-Q/TOF MS and UFLC-MS/MS method[J]. Journal of Mass Spectrometry: JMS, 2016, 51(7): 479-490. DOI:10.1002/jms.3773 |
[37] |
HUANG X, LI N, PU Y Q, et al. Neuroprotective effects of ginseng phytochemicals: recent perspectives[J]. Molecules (Basel, Switzerland), 2019, 24(16): 2939. DOI:10.3390/molecules24162939 |
[38] |
李晶, 戴雨霖, 郑飞, 等. 人参皂苷的口服吸收及体内转化[J]. 中国生物制品学杂志, 2014, 27(12): 1633-1636. LI J, DAI Y L, ZHENG F, et al. Oral absorption and in vivo biotransformation of ginsenosides[J]. Chinese Journal of Biologicals, 2014, 27(12): 1633-1636. |
[39] |
RAZGONOVA M P, VESELOV V V, ZAKHARENKO A M, et al. Panax ginseng components and the pathogenesis of Alzheimer's disease (Review)[J]. Molecular Medicine Reports, 2019, 19(4): 2975-2998. |
[40] |
FENG G F, LI S Z, LIU S, et al. Targeted screening approach to systematically identify the absorbed effect substances of Poria Cocos in vivo using ultrahigh performance liquid chromatography tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2018, 66(31): 8319-8327. DOI:10.1021/acs.jafc.8b02753 |
[41] |
岳佑凇, 张璐, 谢梦迪, 等. 茯苓传统汤剂与配方颗粒汤剂化学成分的对比研究[J]. 中草药, 2021, 52(13): 3852-3861. YUE Y S, ZHANG L, XIE M D, et al. Comparative study on chemical constituents of Poria Cocos traditional decoction and formula granule decoction[J]. Chinese Traditional and Herbal Drugs, 2021, 52(13): 3852-3861. DOI:10.7501/j.issn.0253-2670.2021.13.009 |
[42] |
PARK Y H, SON I H, KIM B, et al. Poria Cocos water extract(PCW) protects PC12 neuronal cells from beta-amyloid-induced cell death through antioxidant and antiapoptotic functions[J]. Die Pharmazie, 2009, 64(11): 760-764. |
[43] |
ZHANG J, GUO H M, YAN F L, et al. An UPLC-Q-Orbitrap method for pharmacokinetics and tissue distribution of four triterpenoids in rats after oral administration of Poria Cocos ethanol extracts[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 203(5): 114237. |
[44] |
钱琪. 茯苓类药材中茯苓三萜类化合物的药物代谢动力学研究[D]. 石家庄: 河北医科大学, 2017. QIAN Q. Study on the pharmacokinetics of triterpene compounds in rats after administration of different medicinal parts of Poria[D]. Shijiazhuang: Hebei Medical University, 2017. |
[45] |
YU M Y, XU X Y, JIANG N, et al. Dehydropachymic acid decreases bafilomycin A1 induced β-Amyloid accumulation in PC12 cells[J]. Journal of Ethnopharmacology, 2017, 198(18): 167-173. |
[46] |
ZHOU X B, ZHANG Y X, JIANG Y Q, et al. Poria Cocos polysaccharide attenuates damage of nervus in Alzheimer's disease rat model induced by D-galactose and aluminum trichloride[J]. Neuroreport, 2021, 32(8): 727-737. DOI:10.1097/WNR.0000000000001648 |
[47] |
杨悦, 谢文婷, 魏涛华, 等. 中药石菖蒲防治阿尔茨海默病研究进展[J]. 辽宁中医药大学学报, 2021, 23(9): 168-172. YANG Y, XIE W T, WEI T H, et al. Progress in prevention and treatment of Alzheimer's disease by Shichangpu(acori tatarinowii rhizoma)[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2021, 23(9): 168-172. |
[48] |
LEE B, SUR B, CHO S G, et al. Effect of beta-asarone on impairment of spatial working memory and apoptosis in the Hippocampus of rats exposed to chronic corticosterone administration[J]. Biomolecules & Therapeutics, 2015, 23(6): 571-581. |
[49] |
梁雪冰, 吴杰, 赵国平, 等. 运用HPLC和GC-MS研究开心散有效抗抑郁成分大鼠吸收情况[J]. 辽宁中医杂志, 2013, 40(2): 365-367. LIANG X B, WU J, ZHAO G P, et al. Study on absorption of effective antidepressant components of Kaixin Powder by HPLC and GC-MS[J]. Liaoning Journal of Traditional Chinese Medicine, 2013, 40(2): 365-367. |
[50] |
RODRIGUEZ-VIEITEZ E, NI R Q, GULYAS B, et al. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42(7): 1119-1132. DOI:10.1007/s00259-015-3047-0 |
[51] |
YANG Y X, XUAN L, CHEN H S, et al. Neuroprotective effects and mechanism of β-asarone against Aβ1-42-induced injury in astrocytes[J]. Evidence-Based Complementary and Alternative Medicine, 2017, 2017: 8516518. |
[52] |
WANG N B, WANG H Y, LI L Y, et al. Β-asarone inhibits amyloid-β by promoting autophagy in a cell model of Alzheimer's disease[J]. Frontiers in Pharmacology, 2020, 10: 1529. DOI:10.3389/fphar.2019.01529 |
[53] |
ZENG L L, ZHANG D, LIU Q, et al. Alpha-asarone improves cognitive function of APP/PS1 mice and reducing Aβ42, P-tau and neuroinflammation, and promoting neuron survival in the Hippocampus[J]. Neuroscience, 2021, 458: 141-152. DOI:10.1016/j.neuroscience.2020.12.026 |
[54] |
王伟, 权丽辉, 刘春雨, 等. 开心散中石菖蒲对人参皂苷成分Rg1、Re、Rb1吸收的影响[A]. 中华中医药学会中药制剂分会. 2009全国中药创新与研究论坛学术论文集[C]. 中华中医药学会中药制剂分会: 中华中医药学会, 2009. WANG W, QUE L H, LIU C Y, et al. The effect of Acorus gramineus in Kaixin San on the absorption of ginsenosides Rg1, Re and Rb1[A]. Chinese Pharmaceutical Society of Traditional Chinese medicine. 2009 National Forum on Innovation and research of Chinese Materia Medica[C]. Chinese Pharmaceutical Society of Traditional Chinese Medicine: Chinese Society of Traditional Chinese medicine, 2009. |
[55] |
GAO H L, ZHANG A H, YU J B, et al. High-throughput lipidomics characterize key lipid molecules as potential therapeutic targets of Kaixinsan protects against Alzheimer's disease in APP/PS1 transgenic mice[J]. Journal of Chromatography B, 2018, 1092: 286-295. DOI:10.1016/j.jchromb.2018.06.032 |
[56] |
ZHANG A H, MA Z M, KONG L, et al. High-throughput lipidomics analysis to discover lipid biomarkers and profiles as potential targets for evaluating efficacy of Kaixin San against APP/PS1 transgenic mice based on UPLC-Q/TOF-MS[J]. Biomedical Chromatography: BMC, 2020, 34(2): e4724. |
[57] |
YANG S H, LEE D K, SHIN J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice[J]. EMBO Molecular Medicine, 2017, 9(1): 61-77. DOI:10.15252/emmm.201606566 |
[58] |
THAL D R, WALTER J, SAIDO T C, et al. Neuropathology and biochemistry of aβ and its aggregates in Alzheimer's disease[J]. Acta Neuropathologica, 2015, 129(2): 167-182. DOI:10.1007/s00401-014-1375-y |
[59] |
NALIVAEVA N N, TURNER A J. Targeting amyloid clearance in Alzheimer's disease as a therapeutic strategy[J]. British Journal of Pharmacology, 2019, 176(18): 3447-3463. DOI:10.1111/bph.14593 |
[60] |
WANG N, JIA Y M, ZHANG B, et al. Kai-Xin-San, a Chinese herbal decoction, accelerates the degradation of β-amyloid by enhancing the expression of neprilysin in rats[J]. Evidence-Based Complementary and Alternative Medicine, 2020, 2020: 3862342. |
[61] |
WANG N, JIA Y M, ZHANG B, et al. Neuroprotective mechanism of Kaixin San: upregulation of hippocampal insulin-degrading enzyme protein expression and acceleration of amyloid-beta degradation[J]. Neural Regeneration Research, 2017, 12(4): 654-659. DOI:10.4103/1673-5374.205107 |
[62] |
QUAN Q K, LI X, FENG J J, et al. Ginsenoside Rg1 reduces β-amyloid levels by inhibiting CD5K-induced PPARγ phosphorylation in a neuron model of Alzheimer's disease[J]. Molecular Medicine Reports, 2020, 22(4): 3277-3288. |
[63] |
吕俊华, 黄丰, 刘月丽, 等. 人参皂苷Rg1对LPS诱导的SK-N-SH细胞株脑啡肽酶表达的影响[J]. 中药材, 2005, 28(2): 117-119. LYU J H, HUANG F, LIU Y L, et al. Effect of ginsenoside Rg1 on neprilysin expression induced by LPS in SK-N-SH cell line[J]. Journal of Chinese Medicinal Materials, 2005, 28(2): 117-119. DOI:10.3321/j.issn:1001-4454.2005.02.021 |
[64] |
彭芳, 崔渊博, 宋文颖, 等. 远志提取物对阿尔茨海默病小鼠学习记忆能力的干预效果[J]. 郑州大学学报(医学版), 2017, 52(4): 407-412. PENG F, CUI Y B, SONG W Y, et al. Effect of Radix polygalae on learning and memory ability of Alzheimer's disease mice[J]. Journal of Zhengzhou University (Medical Sciences), 2017, 52(4): 407-412. |
[65] |
ZENG Y F, YANG J, ZHANG B L, et al. The structure and phase of tau: from monomer to amyloid filament[J]. Cellular and Molecular Life Sciences: CMLS, 2021, 78(5): 1873-1886. DOI:10.1007/s00018-020-03681-x |
[66] |
OAKLEY S S, MAINA M B, MARSHALL K E, et al. Tau filament self-assembly and structure: tau as a therapeutic target[J]. Frontiers in Neurology, 2020, 11(2): 590754. |
[67] |
ARNSTEN A F T, DATTA D, DEL TREDICI K, et al. Hypothesis: tau pathology is an initiating factor in sporadic Alzheimer's disease[J]. Alzheimer's & Dementia: the Journal of the Alzheimer's Association, 2021, 17(1): 115-124. |
[68] |
LUO Y X, LI D L, LIAO Y F, et al. Systems pharmacology approach to investigate the mechanism of Kaixin San in Alzheimer's disease[J]. Frontiers in Pharmacology, 2020, 11(2): 381. |
[69] |
ZHAO H H, DI J, LIU W S, et al. Involvement of GSK3 and PP2A in ginsenoside Rb1's attenuation of aluminum-induced tau hyperphosphorylation[J]. Behavioural Brain Research, 2013, 241(6): 228-234. |
[70] |
ZHANG X, SHI M, YE R D, et al. Ginsenoside rd attenuates tau protein phosphorylation via the PI3K/AKT/GSK-3β pathway after transient forebrain ischemia[J]. Neurochemical Research, 2014, 39(7): 1363-1373. DOI:10.1007/s11064-014-1321-3 |
[71] |
SONG X Y, HU J F, CHU S F, et al. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats[J]. European Journal of Pharmacology, 2013, 710(1/2/3): 29-38. |
[72] |
CHEN Y J, HUANG X B, CHEN W Q, et al. Tenuigenin promotes proliferation and differentiation of hippocampal neural stem cells[J]. Neurochemical Research, 2012, 37(4): 771-777. DOI:10.1007/s11064-011-0671-3 |
[73] |
李牧函, 张静, 赵润清, 等. 6首开心散类方对阿尔兹海默病模型小鼠的药理作用及机制研究[J]. 中国中药杂志, 2016, 41(7): 1269-1274. LI M H, ZHANG J, ZHAO R Q, et al. Effect of six class of Kaixin San formulas on pharmacological and preliminary mechanism of Alzheimer's disease mice[J]. China Journal of Chinese Materia Medica, 2016, 41(7): 1269-1274. |
[74] |
韩月, 黄友解, 王友明. 氧化应激对动物肠道的危害及其营养学缓解措施[J]. 上海畜牧兽医通讯, 2017(4): 44-49. HAN Y, HUANG Y J, WANG Y M. Effects of oxidative stress on animal intestinal tract and its nutritional relief measures[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2017(4): 44-49. |
[75] |
XU Y M, WANG X C, XU T T, et al. Kaixin San ameliorates scopolamine-induced cognitive dysfunction[J]. Neural Regeneration Research, 2019, 14(5): 794-804. DOI:10.4103/1673-5374.249227 |
[76] |
ZHU Y, SHI Y W, CAO C, et al. Jiawei Kaixin San, an herbal medicine formula, ameliorates cognitive deficits via modulating metabolism of beta amyloid protein and neurotrophic factors in Hippocampus of Aβ1-42 induced cognitive deficit mice[J]. Frontiers in Pharmacology, 2019, 10(2): 258. |
[77] |
祝绍峰, 侯翌葳, 孙阳, 等. 基于阿尔茨海默症神经胶质细胞增生所致炎症反应的研究[J]. 世界复合医学, 2021, 7(3): 15-17. ZHU S F, HOU Y W, SUN Y, et al. Research based on the inflammatory response caused by the proliferation of glial cells in Alzheimer's disease[J]. World Journal of Complex Medicine, 2021, 7(3): 15-17. |
[78] |
程美佳, 梁元钰, 刘勇明, 等. 基于网络药理学探讨开心散防治阿尔茨海默病的作用靶点和作用机制[J]. 实用中医内科杂志, 2021, 35(4): 5-9, 144. CHENG M J, LIANG Y Y, LIU Y M, et al. Study on multi-targets mechanism of Kaixin Powder on Alzheimer's disease based on network pharmacology[J]. Journal of Practical Traditional Chinese Internal Medicine, 2021, 35(4): 5-9, 144. |
[79] |
韩丽君, 费洪新, 张英华, 等. 开心散含药血清对阿尔茨海默病小鼠血脑屏障通透性和海马NF-κBp65的影响[J]. 中国老年学杂志, 2017, 37(23): 5784-5787. HAN L J, FEI H X, ZHANG Y H, et al. Effects of Kaixin San drug-containing serum on blood-brain barrier permeability and hippocampal NF-κBp65 in mice with Alzheimer disease[J]. Chinese Journal of Gerontology, 2017, 37(23): 5784-5787. DOI:10.3969/j.issn.1005-9202.2017.23.015 |
[80] |
师冉, 季旭明, 董丽雪, 等. 开心散对快速老化痴呆小鼠SAMP8炎症因子及β-APP影响随机平行对照研究[J]. 实用中医内科杂志, 2013, 27(13): 101-104. SHI R, JI X M, DONG L X, et al. Kaixin San to the rapid aging dementia model SAMP8 mice inflammation factor and the influence of the β-APP[J]. Journal of Practical Traditional Chinese Internal Medicine, 2013, 27(13): 101-104. |
[81] |
李虹霖, 栾凯迪, 高伟, 等. 针灸治疗阿尔茨海默病的分子生物学研究进展[J]. 重庆医科大学学报, 2020, 45(11): 1612-1615. LI H L, LUAN K D, GAO W, et al. Advances in molecular biology of acupuncture on treating Alzheimer's disease[J]. Journal of Chongqing Medical University, 2020, 45(11): 1612-1615. |
[82] |
曹蠡馨, 董秤均, 杨燕, 等. 黄连解毒汤对Aβ1-42诱导AD大鼠学习记忆能力及胆碱能系统的影响[J]. 中国实验方剂学杂志, 2021, 27(10): 23-30. CAO L X, DONG C J, YANG Y, et al. Effect of Huanglian Jiedu Tang on learning and memory ability and cholinergic system in AD rats induced by Aβ1-42[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(10): 23-30. |
[83] |
韩佳欣. 抗阿尔茨海默症活性分子筛选模型的建立及其应用[D]. 昆明: 昆明理工大学, 2019. HAN J X. Establishment and application of an anti-Alzheimer's disease active molecular screening model[D]. Kunming: Kunming University of Science and Technology, 2019. |
[84] |
YI P J, ZHANG Z Y, HUANG S Q, et al. Integrated meta-analysis, network pharmacology, and molecular docking to investigate the efficacy and potential pharmacological mechanism of Kaixin San on Alzheimer's disease[J]. Pharmaceutical Biology, 2020, 58(1): 932-943. DOI:10.1080/13880209.2020.1817103 |