DOI: 10.11656/j.issn.1673-9043.2017.02.16

黄芪 HPLC-ELSD 指纹图谱的建立及分析*

严治学,何永志,王 颖 (天津中医药大学,天津 300193)

摘要:[目的] 建立不同批次黄芪指纹图谱的分析方法。[方法]采用高效液相—蒸发光散射检测法(HPLC-ELSD) 以 Grace Apollo $C_{18}(250 \text{ mm}\times4.6 \text{ mm},5 \text{ }\mu\text{m})$ 为色谱柱;流动相为乙腈和水,梯度洗脱,流速 1.0 mL/min,蒸发光散射检测器,漂移管温度 60 ° 气雾化器 cooling,气压 30 psi (2.07 slpm),增益 100。[结果] 建立的黄芪指纹图谱各色谱峰分离度较好,达到指纹图谱要求,相似度评价结果均大于 0.96,证明不同批次间药材比较稳定。聚类分析法把 12 ° 个批次的黄芪样品分为 3 类。建立了黄芪药材的 HPLC-ELSD 指纹图谱共有模型,找出了较大的 17 ° 个共有峰。[结论]为更好的控制黄芪的内在质量提供了可靠的分析方法。

关键词:黄芪;指纹图谱;聚类分析;相似度评价

中图分类号:R284 文献标志码:A 文章编号:1673-9043(2017)02-0142-04

中药黄芪为豆科(Leguminosae)植物蒙古黄芪[Astragalusmembranaceus(Fisch.) Bge.var.mongholicus(Bge.) Hsiao]和膜荚黄芪[A. membranaceus(Fisch.) Bge.]的干燥根,其味甘,性微温,归肺、脾经,具有补气升阳、固表止汗、利水消肿、生津养血、行滞通痹、托毒排脓、敛疮生肌之功效[1]。现代药理学研究表明,黄芪具有增强免疫系统功能、抗肿瘤、抗心肌缺血、双向调节血糖,抗菌,抗衰老等活性[2-9]。

2010版《中华人民共和国药典》黄芪皂苷类的测定为黄芪甲苷的含量测定,采用蒸发光散射检测器^[10]。单一的含量测定方法已经难以全面评价药材的质量,近年来,黄芪指纹图谱的研究取得了一定进展^[11-16],采用超高效液相色谱/四极杆飞行时间串联质谱仪(UPLC/Q-TOF-MS)^[17]、核磁共振氢谱(¹H-NMR)^[18]、傅里叶红外光谱(FTIR)^[19]等分析技术能更快,更精准的用于药材质量的鉴别,为黄芪药材及其制剂的质量提供了保证。

为考察黄芪药材质量,本文收集不同批次的黄 芪药材,采用 2010 版药典中的药材提取方法及高 效液相-蒸发光散射检测法(HPLC-ELSD)分析技 术,选择 5 种黄芪皂苷作为对照品,建立黄芪指纹

作者简介:严治学(1988-),男,硕士研究生,研究方向为中药 药效物质基础。

通讯作者:何永志,E-amil:heyongzhi126@126.com。

图谱。文章建立的方法 60 min 内出共有峰 16 个,分 离度良好,根据对照品指认了 5 种黄芪皂苷,并对 指纹图谱的相似度分析和匹配分析进行研究,从而 为提升蒙古黄芪的质量控制水平提供科学依据。

1 实验仪器与材料

Waters e2695 高效液相色谱仪, Waters 2424 ELSD etector 检测器; KQ-500E 型超声波清洗器(昆 山市超声仪器有限公司);Sartorius LE225D 型电子 分析天平(德国 Sartorius 公司);FW80 型粉碎机, 购自天津泰斯特仪器有限公司;ZDHW 型电热套, 购自河北黄骅中兴仪器有限公司。黄芪皂苷 I (H-038-130123)、黄芪皂苷Ⅱ(H-037-120528)、黄芪皂 苷Ⅲ(H-036-130123)对照品购自于成都瑞芬思生 物科技有限公司;黄芪甲苷(110781-200613)购自 于中国药品生物制品鉴定所;异黄芪皂苷Ⅱ为本实 验室自制,质量分数均大于98%。黄芪药材由天津市 中新药业提供(批号:1005098、08070801、10120303、 11041804,11062601,Y1001005,Y1110236,Y1202048, Y1202050、Y1210219、Y1210227、Y1212017)。 经天 津中医药大学马琳教授鉴定为蒙古黄芪[Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao]。乙腈为色谱纯(美国 Tedia 公司);水为娃哈 哈纯净水,其余试剂为分析纯。

2 实验方法

2.1 色谱条件 Waters e2695 高效液相色谱仪,色

^{*}基金项目:国家自然科学基金项目(81073033)。

谱柱为 Grace Apollo C₁₈(250 mm×4.6 mm,5 μm),检测器为 Waters 2424 ELSD etector;流动相:A 纯水-B 乙腈梯度洗脱。体积流量 1.0 mL/min; 漂移管温度 60 ℃,雾化器 cooling,气压 30 psi (2.07 slpm),增益 100。见表 1。

表 1 流动相梯度洗脱程序

编号	时间	A	В	С	D
1	0.01	85.0	15.0	0.0	0.0
2	10.00	60.0	40.0	0.0	0.0
3	20.00	60.0	40.0	0.0	0.0
4	30.00	20.0	80.0	0.0	0.0
5	45.00	10.0	90.0	0.0	0.0
6	52.00	10.0	90.0	0.0	0.0
7	60.00	85.0	15.0	0.0	0.0

- 2.2 对照品溶液的制备 精密称取黄芪甲苷4.92 mg、黄芪皂苷 I 9.84 mg、黄芪皂苷 II 5.10 mg、黄芪皂苷 III 5.10 mg、黄芪皂苷 III 4.88 mg、异黄芪皂苷 III 5.12 mg,定容于 10 mL 甲醇中,以 0.22 μm 微孔滤膜过滤,作为对照品母液,备用。
- 2.3 供试品溶液的制备 黄芪药材 60 ℃干燥 2 h,粉碎,过 60 目筛,混合均匀,称取样品 4 g,置于索式提取器中,加一定量甲醇浸泡过夜,次日精密加入甲醇至 160 mL,加热回流 4 h,甲醇减压回收至干,分散于 20 mL 水中,水饱和正丁醇萃取 3 次,每次 40 mL,合并萃取液,减压回收至干,甲醇复溶,定溶于 10 mL 容量瓶中,0.22 μm 微孔滤膜过滤,取续滤液,待测[5-6]。
- 2.4 指纹图谱方法学考察
- 2.4.1 精密度考察 取同一供试品溶液,连续进样 6次,检测指纹图谱,结果表明,测得各共有峰相对保留时间和相对峰面积的 RSD 均小于 5%。表明仪器的精密度良好。
- 2.4.2 稳定性考察 精密称取同一批黄芪粉末 4 g,按"2.3"项下方法制备供试品溶液,并在"2.1"项下色谱条件分别于 0、2、4、8、12、16、24 h 进样,测定峰面积,计算。测定各共有峰相对保留时间和相对峰面积 RSD 均小于 5%。结果表明黄芪供试品溶液在24 h 内稳定。
- 2.4.3 重复性实验 取同一批黄芪样品(11041804) 6份,按"2.2"项下方法制备供试品溶液,并在"2.1" 项下色谱条件,重复连续进样 6次,测定峰面积,计算。测得各共有峰相对保留时间和相对峰面积的 RSD 均小于 5%。表明其重现性良好,符合指纹图

谱的要求。

2.5 黄芪指纹图谱的建立 按"2.3"项下方法制备 12 个不同产地的供试品溶液,进样测定,记录色谱图。运用中药色谱指纹图谱相似度评价系统 2004A版,对 12 批黄芪样品进行了指纹图谱相似度分析和匹配分析研究,归纳出 12 批样品的高效液相色谱法(HPLC)指纹图谱具有 30 个共有的特征指纹峰,其中 17 个共有指纹峰的总面积占总峰面积的90%以上并被依次标定,其中 7 号峰为黄芪早苷、8 号峰为黄芪皂苷Ⅲ、10 号峰为黄芪皂苷Ⅱ、11 号峰为异芪皂苷Ⅱ、12 号峰黄芪皂苷Ⅰ、见图 1、图 2。

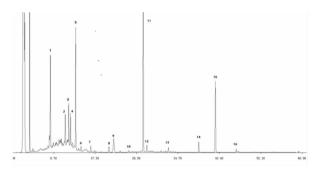


图 1 黄芪药材 HPLC-ELSD 指纹图谱图

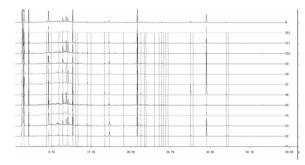


图 2 12 批黄芪样品匹配分析图

2.6 12 批黄芪药材共有指纹峰峰面积的比值 以 12 号峰(黄芪皂苷 I)为内标参照峰(要求峰面积相 对较大、较稳定的共有峰)的峰面积为 1,计算其他 各共有指纹峰峰面积的比值。见表 2。

3 结果与分析

- 3.1 相似度计算结果 应用中药色谱指纹图谱相似度评价系统 2004A 版对 12 批黄芪药材的指纹图谱进行相似度分析,以中位数法生成 12 批药材的对照图谱,相似度评价结果均大于 0.94,证明不同批次间药材比较稳定,结果见表 3。其中 6 号药材的相似度均比较低,6 号药材的 3、5、7、8、11 号峰含量远远低于其他药材。
- 3.2 聚类分析 应用 SPSS18.0 统计软件对 12 批 药材的 17 个共有峰峰面积进行聚类分析,以 17 个

Journal of Tianjin University of Traditional Chinese Medicine

共有峰为指标,采用 Ward Method,利用 Euclidean distance 作为样品的测度,对数据进行 Z 得分标准化处理,得到树状聚类图见图 3。从中可以看到,在 15处,12 批样品分为 3 大类,样品 5,8,9,10 为一类,1、2、3、4、6、11、12 为一类,7 为一类。7 号药材 1 号色谱峰明显高于其他药材的相应色谱峰,2-5,7 号色谱峰也略高于其他药材的相应色谱峰,故区别于其他药材,单独聚为一类。

4 讨论

实验中采用药典中的提取方法,便于平行考察不同批次的黄芪药材质量。实验中考查了甲醇-水、

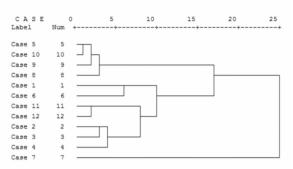


图 3 黄芪聚类分析树状图

乙腈-水、甲醇-0.05%甲酸溶液、乙腈-0.05%甲酸溶液系统,发现甲醇-水系统洗脱时,色谱峰有拖尾现

表 2	黄芪共有指纹峰的相对峰面积比值
रह	男 氏 六 行 拍 纹 哔 的 怕 刈 哔 凹 标 儿 且

峰号	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	$\bar{x}\pm s$
1	14.959	8.703	7.389	12.831	8.097	4.972	88.789	9.343	8.180	10.533	11.136	19.164	17.008±22.918
2	0.006	0.003	0.006	0.010	0.004	0.013	0.156	0.012	0.003	0.012	0.023	0.035	0.024 ± 0.043
3	0.015	0.008	0.022	0.031	0.013	0.003	0.085	0.007	0.007	0.021	0.012	0.014	0.020 ± 0.020
4	0.291	0.018	0.080	0.126	0.266	0.018	0.624	0.116	0.154	0.268	0.050	0.089	0.175± 0.170
5	0.102	0.010	0.144	0.142	0.119	0.004	3.321	0.085	0.028	0.271	0.027	0.092	0.362 ± 0.935
6	0.339	0.457	0.767	0.315	0.141	0.508	0.494	0.246	0.224	0.305	0.825	1.014	0.470 ± 0.270
7	0.021	0.026	0.054	0.015	0.025	0.007	1.054	0.011	0.011	0.067	0.014	0.026	0.111± 0.298
8	0.021	0.012	0.026	0.010	0.009	0.002	0.039	0.008	0.009	0.011	0.010	0.015	0.015± 0.010
9	0.025	0.056	0.026	0.026	0.010	0.089	0.018	0.006	0.030	0.014	0.060	0.079	0.037± 0.027
10	0.088	0.230	0.184	0.148	0.104	0.105	0.191	0.090	0.138	0.102	0.125	0.126	0.136± 0.045
11	0.009	0.011	0.015	0.008	0.012	0.005	0.029	0.011	0.008	0.012	0.009	0.009	0.012± 0.006
12	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000 ± 0.000
13	0.024	0.035	0.038	0.039	0.019	0.029	0.027	0.010	0.024	0.025	0.027	0.022	0.027 ± 0.008
14	0.039	0.011	0.025	0.064	0.021	0.011	0.131	0.015	0.026	0.022	0.0498	0.057	0.039 ± 0.034
15	0.169	0.029	0.009	0.023	0.001	0.209	0.002	0.001	0.003	0.004	0.021	0.026	0.041± 0.070
16	0.856	0.399	0.203	0.228	0.016	1.406	0.053	0.009	0.034	0.053	0.308	0.571	0.345± 0.423
17	0.038	0.026	0.014	0.030	0.006	0.025	0.024	0.006	0.008	0.009	0.031	0.052	0.023 ± 0.014

表 3 黄芪相似度计算结果

	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	R
S1	1.000	0.997	0.994	0.998	0.996	0.965	0.996	0.991	0.997	0.997	0.997	0.998	0.999
S2	0.997	1.000	0.996	0.998	0.993	0.970	0.990	0.992	0.998	0.993	0.998	0.998	0.999
S3	0.994	0.996	1.000	0.994	0.995	0.966	0.987	0.989	0.996	0.995	0.996	0.993	0.997
S4	0.998	0.998	0.994	1.000	0.996	0.958	0.996	0.993	0.999	0.996	0.998	0.999	0.999
S5	0.996	0.993	0.995	0.996	1.000	0.954	0.992	0.991	0.997	0.999	0.993	0.992	0.997
S6	0.965	0.970	0.966	0.958	0.954	1.000	0.940	0.951	0.959	0.952	0.964	0.959	0.967
S7	0.996	0.990	0.987	0.996	0.992	0.940	1.000	0.989	0.992	0.994	0.992	0.996	0.994
S8	0.991	0.992	0.989	0.993	0.991	0.951	0.989	1.000	0.994	0.990	0.992	0.992	0.994
S9	0.997	0.998	0.996	0.999	0.997	0.959	0.992	0.994	1.000	0.996	0.998	0.996	0.999
S10	0.997	0.993	0.995	0.996	0.999	0.952	0.994	0.990	0.996	1.000	0.994	0.994	0.997
S11	0.997	0.998	0.996	0.998	0.993	0.964	0.992	0.992	0.998	0.994	1.000	0.998	0.999
S12	0.998	0.998	0.993	0.999	0.992	0.959	0.996	0.992	0.996	0.994	0.998	1.000	0.998
R	0.999	0.999	0.997	0.999	0.997	0.967	0.994	0.994	0.999	0.997	0.999	0.998	1.000

象,乙腈-水系统洗脱时指纹图谱色谱峰多,分离度好,综合考虑乙腈-水系统可以更好的清洗和保护色谱,所以本实验采用乙腈-水系统作为流动相。

中药指纹图谱广泛运用于中药质量研究,常用的分析方法有薄层色谱法(TLC)、HPLC、红外线(IR)等,其中 HPLC 法应用较广泛。黄芪中的皂苷类成分存在紫外末端吸收的影响,主要采用蒸发光检测器进行测定[10]。本实验主要针对不同批次黄芪药材进行了研究,其中 HPLC-ELSD 指纹图谱标定共有峰 17个,占总峰面积的 90%以上。本实验结果与文献相比[14,16,20],同时结合聚类分析,可以更加直观地对不同批次黄芪药材进行质量评价。文章对黄芪质量标准的建立提供了可靠的依据,且前处理方法简便易行,便于推广。

参考文献:

- [1] 国家药典委员会. 中华人民共和国药典(一部)[M]. 北京: 化学工业出版社, 2005: 212.
- [2] 刘德丽, 包华音, 刘 杨. 近 5 年黄芪化学成分及药理作用研究进展[J]. 食品与药品, 2014, 16(1): 68-70.
- [3] 陈国辉, 黄文凤. 黄芪的化学成分及药理作用研究进展[J]. 中国新药杂志, 2008, 17(17): 1482-1485.
- [4] 张李峰. 红芪和黄芪的免疫调节作用及抗免疫老化机制 比较研究[D]. 兰州: 兰州大学, 2012.
- [5] Qiu HH, Cheng GL, Xu JQ, et al.Effects of astragalus polysaccharides on associated immune cells and cytokines in immunosuppressive dogs[J]. Procedia Vaccinol, 2010, 2 (1): 26–33.
- [6] 刘明华,任美萍,陈健平,等. 黄芪皂苷抗肿瘤活性研究[J]. 中药药理与临床, 2009, 25(2): 68-70.
- [7] 米 红,李燕舞,王晓燕,等. 黄芪总苷对脾虚大鼠胃黏膜保护机制探讨[J]. 中药药理与临床, 2012, 28(5): 61-63.
- [8] 米志勇, 李永新, 张代碧. 黄芪注射液治疗急性心肌梗死

- 并发心源性休克疗效观察[J]. 中国中医急症, 2009, 18(10): 1621-1647.
- [9] 李 亮,杨 萍,蒋 俊,等. 黄芪化学成分及对神经系 统作用的研究概况[J]. 湖南中医药大学学报, 2012, 32 (5): 79-81.
- [10] 国家药品典委员会. 中国药典(一部)[S]. 北京:化学工业出版社, 2010: 181-182.
- [11] 田 兰, 程海燕, 陈晓辉, 等. 黄芪药材的 HPLC 指纹图 谱[J]. 沈阳药科大学学报, 2008, 25(12): 979–982.
- [12] 聂 磊, 仲红波, 向 兰, 等. 粗糙集方法选取相关特征 峰用于黄芪药材的产地鉴别[J]. 中药材, 2006, 29(10): 1020-1023.
- [13] 赵慧辉, 赵 平, 吴刚, 等. 不同产地黄芪 HPLC 指纹图 谱的聚类分析及相似度评价[J].世界科学技术: 中医药现代化, 2011, 13(4): 681-687.
- [14] 覃红萍, 鲁 静, 林瑞超. HPLC-ELSD 法测定黄芪药材中黄芪皂苷 I, Ⅱ, Ⅲ, Ⅳ[J]. 中草药, 2009 (3): 471-473.
- [15] 王宗权, 贾继明, 宋 剑, 等. 不同产地黄芪中黄芪皂苷 I、黄芪皂苷 II 和黄芪皂苷 IV含量测定[J]. 药物分析杂志, 2010, 30(7): 1191-1194.
- [16] 赵灵芝, 朱丹妮. HPLC-ELSD 法测定黄芪中黄芪甲苷的含量[J]. 药物分析杂志, 1999, 19(6): 403-406.
- [17] 芮 雯, 冯毅凡, 石忠峰, 等. 不同产地黄芪药材的 UPLC/Q-TOF-MS 指纹图谱研究[J]. 药物分析杂志, 2012, 32(4): 607-611.
- [18] 曲婷丽, 魏玉海, 李爱平, 等. 黄芪注射液 'H-NMR 指纹 图谱研究[J]. 药学学报, 2016, 51(5):780-785.
- [19] 李洪泽, 闫海涛, 韩风雨, 等. 黄芪药材红外指纹图谱研究[J]. 中国现代药物应用, 2015, 9(4): 242-243.
- [20] 梁 瑾, 刘小花, 任 远, 等. 黄芪药材的 HPLC-DAD-ELSD 指纹图谱研究[J]. 中国实验方剂学杂志, 2012, 18(17): 70-74.

(收稿日期:2016-12-26)

Establishment and analysis of HPLC-ELSD fingerprint of Radix Astragali

YAN Zhi-xue, HE Yong-zhi, WANG Ying

(Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China)

Abstract: [Objective] To establish a fingerprint analysis method of Radix Astragali from various batches.[Methods] The fingerprint was performed by HPLC-ELSD. The conditions of chromatography: Grace Apollo C₁₈ (250 mm × 4.6 mm, 5 μm) was used with a mobile phase of CH₃CN-H₂O, flow rate: 1.0 mL/min, tube: 60 °C, air pressure: 30 psi (2.07 slpm), gain:100. [Results] The HPLC fingerprint for Astragali Radix was developed and 17 common peaks were determined from twelve different batches. The average similarity was over 0.96. The 12 samples were classified as 3 clusters by cluster analysis. [Conclusion] A reliable method was provided for controlling the quality of Radix Astragali.

Key words: Radix Astragali; fingerprint; cluster analysis; similarity evaluation