本文已被:浏览 1079次 下载 594次 |
码上扫一扫! |
|
基于文献计量分析的数据挖掘在中医诊断学领域的应用研究 |
夏淑洁1,2, 杨朝阳1,2, 林雪娟1, 李书楠3, 王洋1, 李灿东1,2
|
1.福建中医药大学中医证研究基地, 福州 350122;2.福建省中医健康状态辨识重点实验, 福州 350122;3.湖南中医药大学中医学院, 长沙 410208
|
|
摘要: |
为系统探索数据挖掘在中医诊断学领域应用的科研产出、研究主体及研究主题演化路径和前沿热点问题,研究以中国知网(CNKI)期刊数据库为数据源,收集自建库以来至2019年该领域相关文献,并利用CiteSpace和VOSviewer科学计量软件进行可视化知识图谱绘制。该研究领域的成长依次经历了起源阶段、探索阶段、发展阶段、平台阶段及新的发展阶段,学者们对该领域研究的关注度总体上呈上升趋势。目前,该领域高产作者共有35位,发文期刊主要为中医领域的核心期刊,机构以上海中医药大学、北京中医药大学、湖南中医药大学科研产出最多。研究主题主要形成四大聚类:计算机与中医辨证论治、数据挖掘与疾病用药规律、中医计量诊断、人工智能与中医四诊。主要研究主题从较早的计算机辅助诊断、数学模型、计量诊断、证素辨证等在中医诊断的应用发展至近年来的数据挖掘、关联规则、中医药、模糊数学、用药规律、聚类算法、大数据、状态辨识、名老中医等。特别是在现今互联网+及“健康中国”的时代背景下,中医诊断有了新的内涵,充分发挥数据挖掘优势,立足中医思维与名医经验,挖掘中医药真实世界的健康大数据规律成为新兴热点。 |
关键词: 数据挖掘 中医诊断 知识图谱 CiteSpace VOSviewer 文献计量 发展趋势 |
DOI:10.11656/j.issn.1672-1519.2021.02.02 |
分类号:R241 |
基金项目:国家自然科学基金联合基金项目(U1705286);国家中医药管理局标准化重大项目(GZY-FJS-2018-240);福建省科技厅软科学项目(2019R0074)。 |
|
Application of data mining in diagnosis of traditional Chinese medicine based on bibliometric analysis |
XIA Shujie1,2, YANG Zhaoyang1,2, LIN Xuejuan1, LI Shunan3, WANG Yang1, LI Candong1,2
|
1.Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;2.Fujian Key Laboratory of Traditional Chinese Medicine Health State, Fuzhou 350122, China;3.College of TCM, Hunan University of Chinese Medicine, Changsha 410208, China
|
Abstract: |
In order to systematically explore the scientific research output,research subjects and the evolution path and frontier hot issues of the application of data mining in the field of traditional Chinese medicine(TCM) diagnostics,this study takes CNKI China Journal Database as the data source,collects relevant literature in this field from the establishment of the database to 2019. The scientific metrology software Citepace and VOSviewer were used to draw a visual knowledge map. It is found that the growth of this research field has experienced the origin,exploration,development,platform and new development stage in turn,and scholars' attention to this field is on the rise in general. At present,there are 35 high-yield authors in this field,and the journals are mainly the core journals in the field of TCM. Shanghai University of Traditional Chinese Medicine,Beijing University of Chinese Medicine and Hunan University of Chinese Medicine have the most scientific research output. There arefour main clusters of research topics:computer and TCM syndrome differentiation and treatment,data mining and disease medication law,TCM quantitative diagnosis,artificial intelligence and TCM four diagnosis. The main research topics have developed from the early application of computer-aided diagnosis,mathematical model,quantitative diagnosis,syndrome differentiation and so on in the TCM diagnosis to data mining,association rules,traditional Chinese medicine,fuzzy mathematics,medication law,clustering algorithm,big data,state identification,famous and old traditional Chinese Medicine in recent years. Especially in the era of Internet+ and “healthy China”,TCM diagnoses have new connotation. Based on the thinking of TCM and the experience of famous doctors,giving full play to the advantages of data mining and exploring the rule of healthy big data in the real world of TCM has become a new hot spot. |
Key words: data mining traditional Chinese medicine diagnosis knowledge map CiteSpace VOSviewer bibliometrics development trend |