今天是:   返回主页   |   加入收藏   |   联系我们
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 140次   下载 38 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于网络药理学和分子对接探究肾苏合剂治疗糖尿病肾病的机制
刘辰霈1,2, 林燕1,2
1.天津中医药大学第一附属医院, 天津 300381;2.国家中医针灸临床医学研究中心, 天津 300381
摘要:
[目的] 基于网络药理学和分子对接技术探究名老中医曹式丽教授“辛通畅络法”的代表方剂—肾苏合剂治疗糖尿病肾病(DN)的作用机制。[方法] 通过TCMSP、BATMAN平台筛选肾苏合剂的活性成分,通过R studio软件获取活性成分的相关靶点,并添加靶点名称的缩写,将方剂的靶点信息与Uniprot数据库信息进行规范化。通过 Gene Cards、OMIM、CTD数据库获取DN的相关靶点。运用韦恩图在线绘制平台获取药物、疾病的交集靶点,通过Cytoscape软件将“药物活性成分、疾病、靶点”可视化。将交集靶点输入STRING数据库进行分析,构建蛋白质-蛋白质相互作用(PPI)网络图,对交集靶点进行基因本体(GO)、京都基因与基因组百科全书(KEGG)富集分析。[结果] 共获得肾苏合剂活性成分66个,靶点504个,DN靶点2 646个,交集靶点243个。共获得PPI靶点241个(2个游离节点被删去),包括清蛋白基因(ALB)、AKT丝氨酸/苏氨酸激酶(AKT1)、白介素-6(IL-6)、肿瘤坏死因子(TNF)、胰岛素基因(INS)、白介素-1β(IL-1β)等。GO富集分析主要涉及:DNA-转录因子结合、RNA聚合酶Ⅱ-特异性DNA-转录因子结合、受体配体活性等。KEGG富集分析主要涉及:脂质和动脉粥样硬化、人巨细胞病毒感染、流体剪切应力与动脉粥样硬化等。[结论] 肾苏合剂可能通过多个靶点、通路治疗DN,本研究为肾苏合剂的临床使用提供了理论依据。
关键词:  肾苏合剂  糖尿病肾病  网络药理学  分子对接
DOI:10.11656/j.issn.1673-9043.2024.11.04
分类号:R285.5
基金项目:国家自然科学基金面上项目(81373609);国家中医药管理局曹式丽全国名老中医药专家传承工作室建设项目(国中医药人教函[2012]149号);国家中医药管理局第四批全国中医临床优秀人才研修项目(国中医药人教发[2017]124号);天津市名中医林燕传承工作室建设项目(tjmzy2404)。
Exploring the mechanism of Shensu Mixture treating diabetic nephropathy based on network pharmacology and molecular docking
LIU Chenpei1,2, LIN Yan1,2
1.First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China;2.National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
Abstract:
[Objective] Based on network pharmacology and molecular docking technology, this paper explored the mechanism of Shensu Mixture which is a representative prescription of “Xintong Changluo Method” put forward by Professor CAO Shili, treating diabetic nephropathy(DN). [Methods] Active ingredients of Shensu Mixture were screened on TCMSP and BATMAN platform. The relevant targets of active ingredients were obtained by using R studio software and abbreviations of target names were added and normalized with the Uniprot database information. Targets of DN were obtained by Gene Cards, OMIM and CTD database. The intersection targets were obtained using the online mapping platform of Venn Diagram. Network diagram was visualized via Cytoscape software. The intersection targets were input into STRING database for analysis, protein-protein interaction(PPI) network diagram was constructed, Gene Ontology(GO) as well as Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed. [Results] A total of 66 active ingredients, 504 targets of Shensu Mixture and 2646 DN targets were obtained. There were totally 243 intersection targets and 241 PPI targets(2 dissociate targets were deleted), including ALB, AKT1, IL-6, TNF, INS, IL-1β, etc. GO enrichment analysis mainly involved DNA-binding transcription factor binding, RNA polymerase Ⅱ-specific DNA-binding transcription factor binding, receptor ligand activity, etc. KEGG enrichment analysis mainly involved Lipid and atherosclerosis, human cytomegalovirus infection, fluid shear stress and atherosclerosis, etc. [Conclusion] Shensu Mixture may treat DN through multiple targets and pathways, this paper provided theoretical basis for its clinical use.
Key words:  Shensu Mixture  diabetic nephropathy  network pharmacology  molecular docking
关注公众号二维码